In Vitro Regeneration and Clonal Propagation in Horticultural Science: Innovations and Applications

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Horticultural Science and Ornamental Plants".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 2185

Special Issue Editor


E-Mail Website
Guest Editor
Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
Interests: plant molecular biology; NGS; tissue culture
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is dedicated to the discussion of the latest research and technological developments in the field of in vitro culture techniques as they pertain to horticultural plants. In vitro regeneration and propagation methods have become indispensable tools in plant biotechnology, facilitating the large-scale production of disease-free, genetically stable, and high-quality plant material. These techniques are of particular importance to the horticultural sector, which relies heavily on the propagation of superior cultivars to meet the growing demands for food, ornamental plants, and medicinal species.

The principal aim of this Special Issue is to provide a forum for researchers and industry professionals to present novel approaches to plant tissue culture, with a particular focus on the development and optimization of in vitro protocols for horticultural species. The Special Issue aims to encompass a comprehensive array of subjects, including micropropagation, somatic embryogenesis, organogenesis, synthetic seed production, and the utilization of bioreactors for large-scale propagation.

Another significant area of interest is the utilization of in vitro techniques in the improvement and conservation of plant genetic resources. In vitro regeneration protocols are frequently utilized in genetic transformation, enabling the development of plants with enhanced resistance to pests, diseases, and environmental stressors. Furthermore, tissue culture-based methods are crucial for the conservation of endangered or rare horticultural species, thus ensuring the preservation of genetic diversity.

In summary, this Special Issue aims to highlight the significant contributions of in vitro culture techniques to sustainable horticultural production and the development of novel crop varieties. It encourages interdisciplinary research and promotes knowledge exchange between academia and industry to foster innovation in horticulture.

Dr. Eslam M. Abdel-Salam
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • horticultural crop improvement
  • in vitro propagation
  • micropropagation
  • plant tissue culture
  • somatic embryogenesis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 5641 KiB  
Article
Inoculum of Endophytic Bacillus spp. Stimulates Growth of Ex Vitro Acclimatised Apple Plantlets
by Jurgita Vinskienė, Inga Tamošiūnė, Elena Andriūnaitė, Dalia Gelvonauskienė, Rytis Rugienius, Muhammad Fahad Hakim, Vidmantas Stanys, Odeta Buzaitė and Danas Baniulis
Plants 2025, 14(7), 1045; https://doi.org/10.3390/plants14071045 - 27 Mar 2025
Viewed by 630
Abstract
In vitro shoot culture and cryopreservation (CP) are techniques essential for the ex situ preservation of genetic resources and the production of plant propagation material of clonally propagated horticultural crops. Changes in plant-associated microbiota diversity and composition induced by in vitro cultivation and [...] Read more.
In vitro shoot culture and cryopreservation (CP) are techniques essential for the ex situ preservation of genetic resources and the production of plant propagation material of clonally propagated horticultural crops. Changes in plant-associated microbiota diversity and composition induced by in vitro cultivation and CP treatment could have a negative effect on the growth and ex vitro adaptation of the in vitro propagated shoots. Therefore, the aim of the present study was to assess changes in endophytic bacteria diversity in domestic apple tissues induced by in vitro cultivation and CP treatment and to investigate the potential of the bacterial inoculum to improve the rooting and ex vitro acclimatisation of the propagated shoots. Metataxonomic analysis revealed a variation in the endophytic bacteria diversity and taxonomic composition between the field-grown tree dormant bud and the in vitro propagated or CP-treated shoot samples of apple cv. Gala. Whereas Sphingobacteriaceae, Sphingomonadaceae, Pseudomonadaceae, and Beijerinckiaceae families were the most prevalent families in the bud samples, Enterobacteriaceae, Bacillaceae, and Lactobacillaceae were dominant in the in vitro shoots. The bacterial inoculum effect on rooting and ex vitro acclimatisation was assessed using four isolates selected by screening the endophytic isolate collection. Bacillus sp. L3.4, B. toyonensis Nt18, or a combined inoculum resulted in a 21%, 36%, and 59% increase in cumulative root length and a 41%, 46%, and 35% increase in the biomass accumulation of ex vitro acclimatised plantlets, respectively. Root zone microbiota functional diversity analysis implied that growth stimulation was not related to improved nutrient uptake but could involve a pathogen-suppressing effect. The results demonstrate that the application of plant growth-promoting bacteria can potentially improve the performance of the in vitro propagated germplasm. Full article
Show Figures

Figure 1

11 pages, 2572 KiB  
Article
Optimization of Selected Minerals and a Cytokinin for In Vitro Propagation of Little-Leaf Mockorange (Philadelphus microphyllus A. Gray) Using Response Surface Methodology (RSM)
by Razieh Khajehyar, Robert Tripepi, William J. Price and Stephen Love
Plants 2024, 13(23), 3446; https://doi.org/10.3390/plants13233446 - 9 Dec 2024
Viewed by 928
Abstract
Optimizing concentrations of minerals and phytohormones is essential when culturing a new plant species. The objective of this study was to use Response Surface Methodology (RSM) to evaluate combinations of selected minerals (N, Ca, and P) along with zeatin (Zea) to obtain optimum [...] Read more.
Optimizing concentrations of minerals and phytohormones is essential when culturing a new plant species. The objective of this study was to use Response Surface Methodology (RSM) to evaluate combinations of selected minerals (N, Ca, and P) along with zeatin (Zea) to obtain optimum shoot growth of little-leaf mockorange. Forty-six treatment combinations were assigned using Proc Optex in SAS software version 9.4. The concentrations of Zea tested were 0.82, 1.095, or 1.37 µM, and the minerals were 22.5, 30, or 37.5 mM N, 1.13, 1.5, or 1.875 mM Ca, and 0.31, 0.625, or 0.937 mM P. Treatment concentrations were tested for their effects on the number of axillary shoots formed, shoot length, and dry weight. The response surface analyses showed that the optimum concentrations of N, Ca, and P were 34 to 39 mM, 1.5 mM, and 0.625 mM, respectively. Medium supplemented with 1.1 µM Zea affected shoot growth positively. Comparison of mineral concentrations in medium with concentrations in full-strength Murashige and Skoog (MS) medium, suggests ½ MS medium should be appropriate to efficiently multiply little-leaf mockorange shoots efficiently, thus saving the time and money involved in creating a custom medium formulation. Full article
Show Figures

Figure 1

Back to TopTop