Bioactive Compounds Derived from Plants and Their Medicinal Potential, 2nd Edition

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: 5 September 2025 | Viewed by 989

Special Issue Editors


E-Mail Website
Guest Editor
School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, Thailand
Interests: parasitology; waterborne parasites; tropical diseases; acanthamoeba; infectious disease epidemiology; natural products
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
Pro-Rector of Research and Post-Graduation UNIFIPA, Catanduva, SP, Brazil
Interests: herbal medicines and biomaterials in inflammatory and tumor processes; mast cells; annexin A1 protein
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Dental Medicine, Catholic University of Portugal, 3504-505 Viseu, Portugal
Interests: neurophysiology; cancer biology; reproductive biology; cellular biology; biomimetic systems; rare diseases; eHealth; histology; molecular biology; biomedicine; infections; public health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Medicinal plants are a rich source of pharmaceutical compounds with demonstrated potential to improve human and animal diseases, offering important avenues for drug discovery. These bioactive compounds have diverse properties, such as antimicrobial, larvicidal, antioxidant, anticancer, and immunomodulatory. Advancements in experimental methodologies, ranging from experimental models and culture systems to microfluidic platforms, have enabled us to study the bioactivity and pharmacology of these compounds with greater precision and efficiency.

Advances in different technologies, such as data science and machine learning, have begun to transform evidence-based medicine, particularly at the diagnostics level, providing a glimpse of what next-generation medicine and pharmaceutics can offer. Despite these advances in both basic science and technology, clinical translations remain scarce or are lagging.

This Special Issue aims to gather original research and review articles that describe rigorous experiments (e.g., in vitro, ex vivo, and in vivo) on the bioactivity of medicinal plants and advance the development of evidence-based pharmaceutical interventions. The reports can explore various aspects of natural product pharmacology, including the identification of novel compounds, their mechanisms and synergistic effects, formulation development, and clinical trials. Through this Special Issue, we would like to promote a positive paradigm shift towards more natural and patient-centric therapeutics.

Dr. Maria de Lourdes Pereira
Dr. Veeranoot Nissapatorn
Prof. Dr. Ana Paula Girol
Dr. Sónia M. R. Oliveira
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytopharmaceutical drugs
  • activity screening (antimicrobial, antioxidant, anticancer, and immunomodulatory activity)
  • experimental models (in vitro, ex vivo, in vivo, etc.)
  • microfluidic systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 5990 KiB  
Article
Neuroprotective Effects of Qi Jing Wan and Its Active Ingredient Diosgenin Against Cognitive Impairment in Plateau Hypoxia
by Tiantian Xia, Ziqiao Yan, Pan Shen, Mingyang Chang, Nan Zhang, Yunan Zhang, Qi Chen, Rui Wang, Li Tong, Wei Zhou, Zhexin Ni and Yue Gao
Pharmaceuticals 2025, 18(5), 738; https://doi.org/10.3390/ph18050738 - 17 May 2025
Viewed by 269
Abstract
Background/Objectives: High-altitude environments have a significant detrimental impact on the cognitive functions of the brain. Qi Jing Wan (QJW), a traditional herbal formula composed of Angelica sinensis, Astragalus membranaceus, and Rhizoma Polygonati Odorati, has demonstrated potential efficacy in treating [...] Read more.
Background/Objectives: High-altitude environments have a significant detrimental impact on the cognitive functions of the brain. Qi Jing Wan (QJW), a traditional herbal formula composed of Angelica sinensis, Astragalus membranaceus, and Rhizoma Polygonati Odorati, has demonstrated potential efficacy in treating cognitive disorders. However, its effects on cognitive dysfunction in plateau hypoxic environments remain unclear. Methods: In this study, acute and chronic plateau cognitive impairment mouse models were constructed to investigate the preventive and therapeutic effects of QJW and its significant active ingredient, diosgenin (Dio). Behavioral experiments were conducted to assess learning and memory in mice. Morphological changes in hippocampal neurons and synapses were assessed, and microglial activation and inflammatory factor levels were measured to evaluate brain damage. Potential active ingredients capable of crossing the blood–brain barrier were identified through chemical composition analysis and network database screening, followed by validation in animal and brain organoid experiments. Transcriptomics analysis, immunofluorescence staining, and molecular docking techniques were employed to explore the underlying mechanisms. Results: QJW significantly enhanced learning and memory abilities in plateau model mice, reduced structural damage to hippocampal neurons, restored NeuN expression, inhibited inflammatory factor levels and microglial activation, and improved hippocampal synaptic damage. Transcriptomics analysis revealed that Dio alleviated hypoxic brain damage and protected cognitive function by regulating the expression of PDE4C. Conclusions: These findings indicate that QJW and its significant active ingredient Dio effectively mitigate hypoxic brain injury and prevent cognitive impairment in high-altitude environments. Full article
Show Figures

Graphical abstract

33 pages, 9334 KiB  
Article
Preclinical and Molecular Docking Insights into the Chemopreventive Role of Fenugreek Seed Extract in a Murine Model of Colorectal Cancer
by Arif Khan, Khaled S. Allemailem, Arwa Essa Alradhi and Faizul Azam
Pharmaceuticals 2025, 18(4), 490; https://doi.org/10.3390/ph18040490 - 28 Mar 2025
Viewed by 532
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, necessitating the development of effective preventive strategies. Fenugreek (Trigonella foenum-graecum) possesses well-documented pharmacological properties; however, its chemopreventive potential in colorectal cancer (CRC) remains unexplored. This study evaluates the efficacy of [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, necessitating the development of effective preventive strategies. Fenugreek (Trigonella foenum-graecum) possesses well-documented pharmacological properties; however, its chemopreventive potential in colorectal cancer (CRC) remains unexplored. This study evaluates the efficacy of methanolic fenugreek seed extract (FSE) in an azoxymethane (AOM)-induced murine colorectal cancer (CRC) model, focusing on the modulation of oxidative stress, regulation of biomarkers, induction of apoptosis, and maintenance of epithelial integrity. Methods: FSE was extracted using cold maceration (yield: 24%) and analyzed by gas chromatography–mass spectrometry (GC-MS), identifying 13 bioactive compounds, including benzene, 1,3-dimethyl-; 1,3-cyclopentadiene, 5-(1-methylethylidene)-; o-Xylene; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-; and benzene, 1,2,3-trimethyl-. All 13 compounds identified were matched with the NIST library with high confidence. Molecular docking was used to assess the interactions of FSE bioactives with E-cadherin–β-catenin complexes. Swiss albino mice received an FSE pre-treatment before AOM induction and continued this treatment three times weekly for 21 weeks. Key assessments included survival analysis, body weight changes, serum biomarker levels (GGT, 5′-NT, LDH), antioxidant enzyme activities (SOD, CAT, GPx1, MDA), reactive oxygen species (ROS) quantification, apoptosis detection via flow cytometry, and immunofluorescence-based evaluation of E-cadherin dynamics. Results: FSE improved survival rates, mitigated AOM-induced weight loss, and dose-dependently reduced serum biomarker levels. Antioxidant enzyme activity was restored, while MDA levels declined. A dose-dependent increase in ROS facilitated apoptosis, as confirmed by flow cytometry (16.7% in the low-dose FSE group and 34.5% in the high-dose FSE group). Immunofluorescence studies revealed that FSE-mediated restoration of E-cadherin localization counteracted AOM-induced epithelial disruptions. Conclusions: FSE exhibits potent chemopreventive potential against CRC by modulating oxidative stress, regulating key biomarkers, inducing apoptosis, and restoring epithelial integrity. These findings support further investigations into its clinical relevance for CRC prevention. Full article
Show Figures

Graphical abstract

Back to TopTop