A Review on Phytochemistry, Ethnopharmacology, and Antiparasitic Potential of Mangifera indica L.
Abstract
1. Introduction
2. Classification and Morphological Description of M. indica
3. Phytochemical Constituents of M. indica and Their Pharmacological Properties
4. Traditional Uses of M. indica in Parasitic Diseases
5. Antiprotozoal Activity of M. indica
5.1. Malaria (Plasmodium spp.)
5.2. Leishmaniasis (Leishmania spp.)
5.3. Trypanosomiasis (Trypanosoma spp.)
5.4. Toxoplasmosis (Toxoplasma gondii)
5.5. Amoebiasis and Acanthamoebiasis
6. Anthelmintic Activity
7. Main Findings, Research Gaps and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anisuzzaman; Hossain, M.S.; Hatta, T.; Labony, S.S.; Kwofie, K.D.; Kawada, H.; Tsuji, N.; Alim, M.A. Food- and Vector-Borne Parasitic Zoonoses: Global Burden and Impacts. Adv. Parasitol. 2023, 120, 87–136. [Google Scholar] [CrossRef]
- World Malaria Report 2024. Available online: https://www.who.int/publications/i/item/9789240104440 (accessed on 10 September 2025).
- Leishmaniasis|Yellow Book|CDC. Available online: https://www.cdc.gov/yellow-book/hcp/travel-associated-infections-diseases/leishmaniasis.html (accessed on 10 September 2025).
- Trypanosomiasis, Human African (Sleeping Sickness). Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed on 10 September 2025).
- Djurković-Djaković, O.; Dupouy-Camet, J.; Van der Giessen, J.; Dubey, J.P. Toxoplasmosis: Overview from a One Health Perspective. Food Waterborne Parasitol. 2019, 15, e00054. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Wei, Z.; Cao, K.; Zhang, Z.; Liang, Q. The Global Epidemiology and Clinical Diagnosis of Acanthamoeba Keratitis. J. Infect. Public Health 2023, 16, 841–852. [Google Scholar] [CrossRef]
- Soil-Transmitted Helminth Infections. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 11 September 2025).
- Schistosomiasis. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 11 September 2025).
- Björkman, A.; Gil, P.; Alifrangis, M. Alarming Plasmodium falciparum Resistance to Artemisinin-Based Combination Therapy in Africa: The Critical Role of the Partner Drug. Lancet Infect. Dis. 2024, 24, e540–e541. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, H.Y.; Bei, A.K.; Weinberger, D.M.; Warren, J.L.; Parikh, S. Mapping Partner Drug Resistance to Guide Antimalarial Combination Therapy Policies in Sub-Saharan Africa. Proc. Natl. Acad. Sci. USA 2021, 118, e2100685118. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.J.; Gao, B.; Nguyen, T.D.; Tran, T.N.A.; Penny, M.A.; Smith, D.L.; Okell, L.; Aguas, R.; Boni, M.F. Pre-Existing Partner-Drug Resistance to Artemisinin Combination Therapies Facilitates the Emergence and Spread of Artemisinin Resistance: A Consensus Modelling Study. Lancet Microbe 2022, 3, e701–e710. [Google Scholar] [CrossRef]
- Lee, W.C.; Russell, B.; Lee, B.; Chu, C.S.; Phyo, A.P.; Sriprawat, K.; Lau, Y.L.; Nosten, F.; Rénia, L. Plasmodium Falciparum Rosetting Protects Schizonts against Artemisinin. EBioMedicine 2021, 73, 103680. [Google Scholar] [CrossRef]
- Nery, R.L.A.; Santos, T.M.S.; Gois, L.L.; Barral, A.; Khouri, R.; Feitosa, C.A.; Santos, L.A. Leishmania spp. Genetic Factors Associated with Cutaneous Leishmaniasis Antimony Pentavalent Drug Resistance: A Systematic Review. Mem. Inst. Oswaldo Cruz 2024, 119, e230240. [Google Scholar] [CrossRef] [PubMed]
- Coffeng, L.E.; Stolk, W.A.; de Vlas, S.J. Predicting the Risk and Speed of Drug Resistance Emerging in Soil-Transmitted Helminths during Preventive Chemotherapy. Nat. Commun. 2024, 15, 1099. [Google Scholar] [CrossRef]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Da Costa, J.M.C. Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob. Agents Chemother. 2017, 61, e02582-16. [Google Scholar] [CrossRef]
- Elsheikha, H.M.; Siddiqui, R.; Khan, N.A. Drug Discovery against Acanthamoeba Infections: Present Knowledge and Unmet Needs. Pathogens 2020, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Ikram, N.K.B.K.; Simonsen, H.T. A Review of Biotechnological Artemisinin Production in Plants. Front. Plant Sci. 2017, 8, 303099. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, S.; Armson, A.; Lymbery, A.J.; Zahedi, A.; Ash, A. Medicinal Plants as a Source of Antiparasitics: An Overview of Experimental Studies. Pathog. Glob. Health 2023, 117, 535–553. [Google Scholar] [CrossRef]
- Wink, M. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites. Molecules 2012, 17, 12771–12791. [Google Scholar] [CrossRef] [PubMed]
- Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango). Evid.-Based Complement. Altern. Med. 2017, 2017, 6949835. [Google Scholar] [CrossRef]
- Kumar, M.; Rawat, S.; Nagar, B.; Kumar, A.; Pala, N.A.; Bhat, J.A.; Bussmann, R.W.; Cabral-Pinto, M.; Kunwar, R. Implementation of the Use of Ethnomedicinal Plants for Curing Diseases in the Indian Himalayas and Its Role in Sustainability of Livelihoods and Socioeconomic Development. Int. J. Environ. Res. Public Health 2021, 18, 1509. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Tornese, R.; Mita, G.; Durante, M. Bioactive Compounds and Antioxidant Activities in Different Fractions of Mango Fruits (Mangifera indica L., Cultivar Tommy Atkins and Keitt). Antioxidants 2022, 11, 484. [Google Scholar] [CrossRef]
- Sferrazzo, G.; Palmeri, R.; Restuccia, C.; Parafati, L.; Siracusa, L.; Spampinato, M.; Carota, G.; Distefano, A.; Di Rosa, M.; Tomasello, B.; et al. Mangifera indica L. Leaves as a Potential Food Source of Phenolic Compounds with Biological Activity. Antioxidants 2022, 11, 1313. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Castañeda-Valbuena, D.; Fernandez-Lafuente, R.; Berenguer-Murcia, Á.; Meza-Gordillo, R.; Gutiérrez, L.F.; Pacheco, N.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T. Phenolic Compounds in Mango Fruit: A Review. J. Food Meas. Charact. 2022, 16, 619–636. [Google Scholar] [CrossRef]
- Shah, K.; Patel, M.; Patel, R.; Parmar, P. Mangifera indica (Mango). Pharmacogn. Rev. 2010, 4, 42–48. [Google Scholar] [CrossRef]
- Du, S.; Liu, H.; Lei, T.; Xie, X.; Wang, H.; He, X.; Tong, R.; Wang, Y. Mangiferin: An Effective Therapeutic Agent against Several Disorders (Review). Mol. Med. Rep. 2018, 18, 4775–4786. [Google Scholar] [CrossRef] [PubMed]
- Alaiya, M.A.; Odeniyi, M.A. Utilisation of Mangifera Indica Plant Extracts and Parts in Antimicrobial Formulations and as a Pharmaceutical Excipient: A Review. Future J. Pharm. Sci. 2023, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Saúco, V.G. Mango Production and World Market: Current Situation and Future Prospects. In VII International Mango Symposium; International Society for Horticultural Science: Korbeek-Lo, Belgium, 2004. [Google Scholar]
- International Plant Names Index. Available online: https://www.ipni.org/ (accessed on 15 September 2025).
- Litz, R. The Mango: Botany, Production and Uses. In The Mango: Botany, Production and Uses; CABI Publishing: Wallingford, UK, 2009. [Google Scholar] [CrossRef]
- Nandwani, D. Grafting of Mango Cultivars (Mangifera indica L.) in the U.S. Virgin Islands. Acta Hortic. 2015, 1075, 185–190. [Google Scholar] [CrossRef]
- Nurul Huda, A.; Che Salmah, M.R.; Abu Hassan, A.; Hamdan, A.; Abdul Razak, M.N. Pollination Services of Mango Flower Pollinators. J. Insect Sci. 2015, 15, 113. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, D.; Jiang, Y.; Yahia, E.M. Maintaining Mango (Mangifera indica L.) Fruit Quality during the Export Chain. Food Res. Int. 2011, 44, 1254–1263. [Google Scholar] [CrossRef]
- Masud Parvez, G.M. Pharmacological Activities of Mango (Mangifera indica): A Review. J. Pharmacogn. Phytochem. 2016, 5, 1–7. [Google Scholar]
- Guiamba, I.R.F. Nutritional Value and Quality of Processed Mango Fruits. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2016. [Google Scholar]
- Ojewole, J.A.O. Antiinflammatory, Analgesic and Hypoglycemic Effects of Mangifera indica Linn. (Anacardiaceae) Stem-Bark Aqueous Extract. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 547–554. [Google Scholar] [CrossRef]
- Islam, A.; Islam, M.R.; Mannan, M.A.; Olival, K.J.; Kabir, M. Analgesic, Anti-Inflammatory and Antimicrobial Effects of Ethanol Extracts of Mango Leaves. J. Bangladesh Agric. Univ. 2010, 8, 239–244. [Google Scholar] [CrossRef]
- Taing, M.W.; Pierson, J.T.; Shaw, P.N.; Dietzgen, R.G.; Roberts-Thomson, S.J.; Gidley, M.J.; Monteith, G.R. Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells. J. Chem. 2015, 2015, 613268. [Google Scholar] [CrossRef]
- Banerjee, N.; Kim, H.; Krenek, K.; Talcott, S.T.; Mertens-Talcott, S.U. Mango Polyphenolics Suppressed Tumor Growth in Breast Cancer Xenografts in Mice: Role of the PI3K/AKT Pathway and Associated MicroRNAs. Nutr. Res. 2015, 35, 744–751. [Google Scholar] [CrossRef]
- Diso, S.; Ali, M.; Mukhtar, S.; Garba, M. Antibacterial Activity and Phytochemical Screening of Mangifera indica (Mango) Stem and Leaf Extracts on Clinical Isolates of Methicillin Resistant Staphylococcus aureus. J. Adv. Med. Pharm. Sci. 2017, 13, 1–6. [Google Scholar] [CrossRef]
- Doughari, J.H.; Manzara, S. In Vitro Antibacterial Activity of Crude Leaf Extracts of Mangifera indica Linn. Afr. J. Microbiol. Res. 2008, 2, 67–072. [Google Scholar]
- Latha, M.S. Comparative Studies on Anthelmintic Activity of Mangifera indica L. Var. Thotapuri and Mangifera indica L. Var. Neelam Root Crude Extracts. Int. J. Phytopharm. 2012, 2, 21–24. [Google Scholar] [CrossRef]
- Saha, S.; Sadhukhan, P.; Sil, P.C. Mangiferin: A Xanthonoid with Multipotent Anti-Inflammatory Potential. BioFactors 2016, 42, 459–474. [Google Scholar] [CrossRef]
- Minniti, G.; Laurindo, L.F.; Machado, N.M.; Duarte, L.G.; Guiguer, E.L.; Araujo, A.C.; Dias, J.A.; Lamas, C.B.; Nunes, Y.C.; Bechara, M.D.; et al. Mangifera indica L., By-Products, and Mangiferin on Cardio-Metabolic and Other Health Conditions: A Systematic Review. Life 2023, 13, 2270. [Google Scholar] [CrossRef]
- Bai, X.; Lai, T.; Zhou, T.; Li, Y.; Li, X.; Zhang, H. In Vitro Antioxidant Activities of Phenols and Oleanolic Acid from Mango Peel and Their Cytotoxic Effect on A549 Cell Line. Molecules 2018, 23, 1395. [Google Scholar] [CrossRef]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Sivankalyani, V.; Feygenberg, O.; Diskin, S.; Wright, B.; Alkan, N. Increased Anthocyanin and Flavonoids in Mango Fruit Peel Are Associated with Cold and Pathogen Resistance. Postharvest Biol. Technol. 2016, 111, 132–139. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef] [PubMed]
- Mansuri, M.L.; Parihar, P.; Solanki, I.; Parihar, M.S. Flavonoids in Modulation of Cell Survival Signalling Pathways. Genes Nutr. 2014, 9, 400. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Cassani, L.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Chamorro, F.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021, 10, 251. [Google Scholar] [CrossRef]
- Huang, J.; Zaynab, M.; Sharif, Y.; Khan, J.; Al-Yahyai, R.; Sadder, M.; Ali, M.; Alarab, S.R.; Li, S. Tannins as Antimicrobial Agents: Understanding Toxic Effects on Pathogens. Toxicon 2024, 247, 107812. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Burkill, H.M. The Useful Plants of West Tropical Africa, 1st ed.; Royal Botanic Gardens: London, UK, 1985; Volume 1, ISBN 9780947643010. [Google Scholar]
- Maroyi, A. Treatment Of Diarrhoea Using Traditional Medicines: Contemporary Research In South Africa And Zimbabwe. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 5–10. [Google Scholar] [CrossRef]
- Rajan, S.; Surya, D.; Vijaya, P.; Prabhu, K.; Thirunalasundari, T. Pharmacognostical and Phytochemical Studies of Mangifera indica Seed Kernel. Artic. J. Pharm. Res. 2012, 4, 4272–4275. [Google Scholar]
- Pierre, S.; Fohouo Fernand-N, T.; Nloga Alexandre-Michel, N.; Jean, M. Medicinal Plants Used in Traditional Treatment of Malaria in Cameroon. J. Ecol. Nat. Environ. 2011, 3, 104–117. [Google Scholar]
- Tabuti, J.R.S.; Obakiro, S.B.; Nabatanzi, A.; Anywar, G.; Nambejja, C.; Mutyaba, M.R.; Omara, T.; Waako, P. Medicinal Plants Used for Treatment of Malaria by Indigenous Communities of Tororo District, Eastern Uganda. Trop. Med. Health 2023, 51, 34. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.R.; Joshi, K. Ethnomedicinal Plants Used Against Skin Diseases in Some Villages of Kali Gandaki, Bagmati and Tadi Likhu Watersheds of Nepal. Ethnobot. Leafl. 2007, 2007, 27. [Google Scholar]
- Tabassum, N.; Hamdani, M. Plants Used to Treat Skin Diseases. Pharmacogn. Rev. 2014, 8, 52. [Google Scholar] [CrossRef]
- Sandhu, P.S.; Singh, B.; Gupta, V.; Bansal, P.; Kumar, D. Potential Herbs Used in Ocular Diseases. J. Pharm. Sci. Res. 2011, 3, 1127–1140. [Google Scholar]
- Asanga, E.E.; Okoroiwu, H.U.; Umoh, E.A.; Eseyin, O.A.; Oko, M.O.; Okey, F.E.; Oli, M. Antiplasmodial Profiling of Mangifera indica’s Herbal Formulation and Its Ability to Ameliorate Hematological Derangements in Plasmodium berghei-Infected Mice. Nat. Prod. Commun. 2023, 18, 1934578X231215937. [Google Scholar] [CrossRef]
- Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 11 September 2025).
- Alghamdi, J.M.; Al-Qahtani, A.A.; Alhamlan, F.S.; Al-Qahtani, A.A. Recent Advances in the Treatment of Malaria. Pharmaceutics 2024, 16, 1416. [Google Scholar] [CrossRef]
- Yu-Ping, L.; Mendonça, D.; Sheng-Khai, L.; Phan-Sing, Y.A.; Chimplee, S.; Chuprom, J.; Boonhok, R.; Mahboob, T.; Oliveira, S.M.R.; Rajagopal, M.; et al. Malaria—The Importance of Phytochemicals as Sources of Alternative Medicines. Indian J. Nat. Prod. Resour. 2024, 15, 274–285. [Google Scholar] [CrossRef]
- Yadav, S.; Kumari, B.; Kumar, S. Anti-Plasmodial Potential of Mangifera indica: A Comprehensive Review. Afr. J. Biomed. Res. 2024, 27, 1104–1114. [Google Scholar] [CrossRef]
- Cudjoe, E.; Cudjoe, E.; Donu, D.; Donu, D.; Okonu, R.E.; Okonu, R.E.; Amponsah, J.A.; Amoah, L.E.; Amoah, L.E. The In Vitro Antiplasmodial Activities of Aqueous Extracts of Selected Ghanaian Herbal Plants. J. Parasitol. Res. 2020, 2020, 5041919. [Google Scholar] [CrossRef]
- Koffi, J.A.; Silué, K.D.; Tano, D.K.; Dable, T.M.; Yavo, W. Evaluation of Antiplasmodial Activity of Extracts from Endemic Medicinal Plants Used to Treat Malaria in Côte d’Ivoire. Bioimpacts 2020, 10, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Maenpuen, S.; Mee-udorn, P.; Pinthong, C.; Athipornchai, A.; Phiwkaow, K.; Watchasit, S.; Pimviriyakul, P.; Rungrotmongkol, T.; Tinikul, R.; Leartsakulpanich, U.; et al. Mangiferin Is a New Potential Antimalarial and Anticancer Drug for Targeting Serine Hydroxymethyltransferase. Arch. Biochem. Biophys. 2023, 745, 109712. [Google Scholar] [CrossRef]
- De Villiers, K.A.; Egan, T.J. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Acc. Chem. Res. 2021, 54, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Kumar, S.; Kumar, R.; Kumar, A.; Verma, R.; Darokar, M.P.; Rout, P.; Pal, A. Inhibition of Heme Detoxification Pathway in Malaria Parasite by 3-Hydroxy-11-Keto-β-Boswellic Acid Isolated from Boswellia Serrata. Biomed. Pharmacother. 2021, 144, 112302. [Google Scholar] [CrossRef] [PubMed]
- Emergency Department Management of Mosquito-Borne Illness: Malaria, Dengue, and West Nile Virus. Available online: https://www.ebmedicine.net/topics/infectious-disease/mosquito-borne (accessed on 11 September 2025).
- Asanga, E.E.; Joseph, A.P.; Okoroiwu, H.U.; Nelson, P.E.; Edet, U.O.; Edet, B.O.; Umoafia, N.E.; Archibong, C.; Udoh, I.E.; Isienyi, C.C.; et al. The Antimalarial Profiling of Mangifera indica’s Herbal Formulation Attenuated Biochemical Alterations and Improved Hepatocytes’ Histoarchitecture in Plasmodium berghei-Infected Mice. J. Parasit. Dis. 2024, 48, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.d.A.; Sousa, J.M.; de Aguiar, A.H.B.M.; Torres, K.C.S.; Coelho, A.J.S.; Ferreira, A.L.; Lima, M.I.S. Systematic Review of Treatment Failure and Clinical Relapses in Leishmaniasis from a Multifactorial Perspective: Clinical Aspects, Factors Associated with the Parasite and Host. Trop. Med. Infect. Dis. 2023, 8, 430. [Google Scholar] [CrossRef]
- Haldar, N.; Basu, S.; Bhattacharya, S.; Pandey, J.N.; Biswas, M. Antileishmanial Activity of Mangifera indica Leaf Extracts on the in Vitro Growth of Leishmania Donovani Promastigotes. Elixir Pharm. 2012, 46, 8189–8191. [Google Scholar]
- Ramos, E.H.S.; Moraes, M.M.; Nerys, L.L.D.A.; Nascimento, S.C.; Militão, G.C.G.; De Figueiredo, R.C.B.Q.; Da Câmara, C.A.G.; Silva, T.G. Chemical Composition, Leishmanicidal and Cytotoxic Activities of the Essential Oils from Mangifera indica L. Var. Rosa and Espada. BioMed Res. Int. 2014, 2014, 734946. [Google Scholar] [CrossRef]
- Roy, S.; Mandal, M.; Halder, M.; Das, P.K.; Ukil, A. Oxidative Stress and Survival of Leishmania spp.: A Relationship of Inverse Proportionality for Disease Outcome. Expert Rev. Mol. Med. 2025, 27, e21. [Google Scholar] [CrossRef]
- Brígido, H.P.C.; dos Santos, L.G.A.; de Barros, R.C.; Correa-Barbosa, J.; Santos, P.V.B.d.; Paz, R.F.L.; Pereira, A.R.; Albuquerque, K.C.O.d.; Campos, M.B.; Silveira, F.T.; et al. The Role of Oxidative Stress in the Pathogenesis and Treatment of Leishmaniasis: Impact on Drug Toxicity and Therapeutic Potential of Natural Products. Toxics 2025, 13, 190. [Google Scholar] [CrossRef]
- García, M.; Monzote, L.; Scull, R.; Herrera, P. Activity of Cuban Plants Extracts against Leishmania amazonensis. ISRN Pharmacol. 2012, 2012, 104540. [Google Scholar] [CrossRef]
- Carter, N.S.; Kawasaki, Y.; Nahata, S.S.; Elikaee, S.; Rajab, S.; Salam, L.; Alabdulal, M.Y.; Broessel, K.K.; Foroghi, F.; Abbas, A.; et al. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Med. Sci. 2022, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Dufe, V.T.; Ingner, D.; Heby, O.; Khomutov, A.R.; Persson, L.; Al-Karadaghi, S. A Structural Insight into the Inhibition of Human and Leishmania donovani Ornithine Decarboxylases by 1-Amino-Oxy-3-Aminopropane. Biochem. J. 2007, 405, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Boitz, J.M.; Yates, P.A.; Kline, C.; Gaur, U.; Wilson, M.E.; Ullman, B.; Roberts, S.C. Leishmania Donovani Ornithine Decarboxylase Is Indispensable for Parasite Survival in the Mammalian Host. Infect. Immun. 2009, 77, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Abirami, M.; Karan Kumar, B.; Faheem; Dey, S.; Johri, S.; Reguera, R.M.; Balaña-Fouce, R.; Gowri Chandra Sekhar, K.V.; Sankaranarayanan, M. Molecular-Level Strategic Goals and Repressors in Leishmaniasis—Integrated Data to Accelerate Target-Based Heterocyclic Scaffolds. Eur. J. Med. Chem. 2023, 257, 115471. [Google Scholar] [CrossRef]
- Ramos, L.G.; de Souza, K.R.; Júnior, P.A.S.; Câmara, C.C.; Castelo-Branco, F.S.; Boechat, N.; Carvalho, S.A. Tackling the Challenges of Human Chagas Disease: A Comprehensive Review of Treatment Strategies in the Chronic Phase and Emerging Therapeutic Approaches. Acta Trop. 2024, 256, 107264. [Google Scholar] [CrossRef]
- Papagni, R.; Novara, R.; Minardi, M.L.; Frallonardo, L.; Panico, G.G.; Pallara, E.; Cotugno, S.; Ascoli Bartoli, T.; Guido, G.; De Vita, E.; et al. Human African Trypanosomiasis (Sleeping Sickness): Current Knowledge and Future Challenges. Front. Trop. Dis. 2023, 4, 1087003. [Google Scholar] [CrossRef]
- Awa-Imaga, N.O. Possible Anti-Trypanosomal Effect of Aqueous Leaf Extracts of Mangifera indica on Plasma Proteins of Trypanosoma Congolense-Infected Rats. J. Pharmacogn. Phytother. 2011, 3, 137–140. [Google Scholar]
- Ohashi, M.; Amoa-Bosompem, M.; Kwofie, K.D.; Agyapong, J.; Adegle, R.; Sakyiamah, M.M.; Ayertey, F.; Owusu, K.B.A.; Tuffour, I.; Atchoglo, P.; et al. In Vitro Antiprotozoan Activity and Mechanisms of Action of Selected Ghanaian Medicinal Plants against Trypanosoma, Leishmania, and Plasmodium Parasites. Phytother. Res. 2018, 32, 1617–1630. [Google Scholar] [CrossRef] [PubMed]
- Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules 2020, 25, 1924. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pertejo, Y.; García-Estrada, C.; Martínez-Valladares, M.; Murugesan, S.; Reguera, R.M.; Balaña-Fouce, R. Polyamine Metabolism for Drug Intervention in Trypanosomatids. Pathogens 2024, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Daher, D.; Shaghlil, A.; Sobh, E.; Hamie, M.; Hassan, M.E.; Moumneh, M.B.; Itani, S.; El Hajj, R.; Tawk, L.; El Sabban, M.; et al. Comprehensive Overview of Toxoplasma gondii-Induced and Associated Diseases. Pathogens 2021, 10, 1351. [Google Scholar] [CrossRef]
- Al Nasr, I.; Ahmed, F.; Pullishery, F.; El-Ashram, S.; Ramaiah, V.V. Toxoplasmosis and Anti-Toxoplasma Effects of Medicinal Plant Extracts-A Mini-Review. Asian Pac. J. Trop. Med. 2016, 9, 730–734. [Google Scholar] [CrossRef]
- Cheraghipour, K.; Masoori, L.; Ezzatpour, B.; Roozbehani, M.; Sheikhian, A.; Malekara, V.; Niazi, M.; Mardanshah, O.; Moradpour, K.; Mahmoudvand, H. The Experimental Role of Medicinal Plants in Treatment of Toxoplasma gondii Infection: A Systematic Review. Acta Parasitol. 2021, 66, 303–328. [Google Scholar] [CrossRef]
- Cardona-Trujillo, M.C.; Jiménez-González, F.J.; Veloza, L.A.; Sepúlveda-Arias, J.C. In Vitro Anti-Toxoplasma Activity of Extracts Obtained from Tabebuia rosea and Tabebuia chrysantha: The Role of β-Amyrin. Molecules 2024, 29, 920. [Google Scholar] [CrossRef]
- Sharma, H.N.; Catrett, J.; Nwokeocha, O.D.; Boersma, M.; Miller, M.E.; Napier, A.; Robertson, B.K.; Abugri, D.A. Anti-Toxoplasma gondii Activity of Trametes Versicolor (Turkey Tail) Mushroom Extract. Sci. Rep. 2023, 13, 8667. [Google Scholar] [CrossRef] [PubMed]
- Guillén, N. Pathogenicity and Virulence of Entamoeba Histolytica, the Agent of Amoebiasis. Virulence 2023, 14, 2158656. [Google Scholar] [CrossRef]
- Kofman, A.; Guarner, J. Infections Caused by Free-Living Amoebae. J. Clin. Microbiol. 2022, 60, e00228-21. [Google Scholar] [CrossRef]
- Angelici, M.C.; Walochnik, J.; Calderaro, A.; Saxinger, L.; Dacks, J.B. Free-Living Amoebae and Other Neglected Protistan Pathogens: Health Emergency Signals? Eur. J. Protistol. 2021, 77, 125760. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S. Free-living Amoebae. Trop. Parasitol. 2024, 14, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Jasni, N.; Saidin, S.; Arifin, N.; Azman, D.K.; Shin, L.N.; Othman, N. A Review: Natural and Synthetic Compounds Targeting Entamoeba histolytica and Its Biological Membrane. Membranes 2022, 12, 396. [Google Scholar] [CrossRef]
- Sutrave, S.; Richter, M.H. The Truman Show for Human Helminthic Parasites: A Review of Recent Advances in In Vitro Cultivation Platforms. Microorganisms 2023, 11, 1708. [Google Scholar] [CrossRef] [PubMed]
- de Macêdo, K.M.; Morais-Costa, F.; Ferreira, A.V.d.P.; Soares, A.C.M.; Júnior, V.S.M.; Pereira, D.E.A.; Vasconcelos, V.d.O.; de Oliveira, N.J.F.; Duarte, E.R.; Filho, O.C. Mangifera indica L. (Anacardiaceae) Leaf Favor the Control of Haemonchus Contortus. Contrib. Cienc. Soc. 2024, 17, e7928. [Google Scholar] [CrossRef]
- Nery, P.S.; Nogueira, F.A.; Oliveira, N.J.F.; Martins, E.R.; Duarte, E.R. Efficacy of Extracts of Immature Mango on Ovine Gastrointestinal Nematodes. Parasitol. Res. 2012, 111, 2467–2471. [Google Scholar] [CrossRef]
- Elsherbini, G. Anthelmintic Activity of Unripe Mangifera indica L. (Mango) against Strongyloides stercoralis. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 401–409. [Google Scholar]
- Chattopadhyay, S.; Subhas, N.; Bose, C.; Deb, J.; Deb, N.K.; Saha, S.; Das, S.; Chakraborty, S.; Mukherjee, D. Preliminary Phytochemical Screening and in Vitro Evaluation of Anthelmintic Activity of Leaves and Stem Bark of Mangifera indica L. (Anacardiaceae). J. Pharmacogn. Phytochem. 2023, 12, 312–317. [Google Scholar] [CrossRef]
- Joysa Ruby, J.; Selvakumar, K.; Mahato, D.; Sonali, D.; Ruby, J.J.; Professor, A. Formulation and Evaluation of Mangifera indica Seed Herbal Syrup For Its Anthelmintic Activity. JET-M 2024, 72, 1566–1579. [Google Scholar]
- García, D.; Escalante, M.; Delgado, R.; Ubeira, F.M.; Leiro, J. Anthelminthic and Antiallergic Activities of Mangifera indica L. Stem Bark Components Vimang and Mangiferin. Phytother. Res. 2003, 17, 1203–1208. [Google Scholar] [CrossRef]
- Telange, D.R.; Sohail, N.K.; Hemke, A.T.; Kharkar, P.S.; Pethe, A.M. Phospholipid Complex-Loaded Self-Assembled Phytosomal Soft Nanoparticles: Evidence of Enhanced Solubility, Dissolution Rate, Ex Vivo Permeability, Oral Bioavailability, and Antioxidant Potential of Mangiferin. Drug Deliv. Transl. Res. 2021, 11, 1056–1083. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.K.; Hafeez, A.; Usmani, S.A.; Noor, L.; Khan, I.R. Nanocarrier-Based Delivery Approaches of Mangiferin: An Updated on Leveraging Biopharmaceutical Characteristics of the Bioactive. Curr. Pharm. Biotechnol. 2024, 26, 2270–2287. [Google Scholar] [CrossRef] [PubMed]
- Shaikenov, R.O.; Klimshina, V.I.; Morozkina, S.N.; Snetkov, P.P. Polymeric Matrices for Mangiferin Delivery: Ways to Enhance Bioavailability and Therapeutic Effect. Eng. Proc. 2025, 87, 78. [Google Scholar] [CrossRef]
- Tjahjani, S. Antimalarial Activity of Garcinia mangostana L Rind and Its Synergistic Effect with Artemisinin in Vitro. BMC Complement. Altern. Med. 2017, 17, 131. [Google Scholar] [CrossRef]
- Soto-Sánchez, J.; Garza-Treviño, G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024, 16, 1239. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Gao, Y.; Xu, Z.; Lian, S.; Ma, Y.; Guo, X.; Hu, P.; Li, Z.; Huang, C. Pharmacokinetics of Mangiferin and Its Metabolite—Norathyriol, Part 1: Systemic Evaluation of Hepatic First-Pass Effect in Vitro and in Vivo. BioFactors 2016, 42, 533–544. [Google Scholar] [CrossRef]
- Barakat, S.; Nasr, M.; Ahmed, R.F.; Badawy, S.; Mortada, N. Recent Formulation Advances of Mangiferin. Rev. Bras. Farmacogn. 2022, 32, 871–882. [Google Scholar] [CrossRef]
- Kaminsky, R.; Mäser, P. Global Impact of Parasitic Infections and the Importance of Parasite Control. Front. Parasitol. 2025, 4, 1546195. [Google Scholar] [CrossRef] [PubMed]
Compound/Class | Chemical Structure | Plant Part (Main Source) | General Pharmacological Properties | References |
---|---|---|---|---|
Mangiferin (xanthone) | Xanthone derivative | Leaves, bark | Antioxidant, anti-inflammatory, immunomodulatory | [43,44] |
Phenolic acids (gallic, caffeic, chlorogenic, ellagic) | Carboxylic acid derivatives | Peel | Antioxidant, antimicrobial, enzyme inhibition | [45,46,47] |
Flavonoids (quercetin, catechins, kaempferol, rutin) | Polyphenolic compounds | Leaves, peel, fruit | Anti-inflammatory, antioxidant, membrane stabilization, signaling modulation | [23,48,49,50] |
Tannins (condensed, hydrolyzable) | Oligomeric flavonoids | Leaves, fruit, kernel, stem bark | Antimicrobial, anti-diarrheal, protein-binding, tissue-protective | [51,52] |
Triterpenes & Sterols (lupeol, β-sitosterol, cycloartanes) | Steroid-like structures | Bark, seeds, kernels | Anti-inflammatory, immunomodulatory | [20] |
Region | Plant Part Used | Preparation | Traditional Indication (Parasitic Link) | Reference |
---|---|---|---|---|
Senegal, Ivory Coast, Nigeria, Congo | Bark | Decoction/infusion | Dysentery, diarrhea (possible link: intestinal parasites) | [54] |
South Africa, Zimbabwe | Bark, seeds | Powder, decoction | Antidiarrheal (possible link: intestinal parasites) | [55] |
India | Seed kernel | Powder (with honey) | Helminthic infestations | [56] |
Cameroon, Uganda | Leaves, bark | Infusion, decoction | Malaria, febrile illnesses (Plasmodium spp.) | [57,58] |
India, Asia | Gum, bark | Topical | Ulcers, cracked skin, scabies (possible link: leishmaniasis) | [59,60] |
Asia | Leaves (infusion), bark | Eye wash, poultice | Eye infections (possible link: Acanthamoeba keratitis) | [61] |
Parasite/Disease | Experimental Model | Extract/Compound | Potency (IC50, MIC, Survival, etc.) | Proposed Mechanism(s) | Evidence Strength | References |
---|---|---|---|---|---|---|
Plasmodium spp. (Malaria) | In vitro (P. falciparum, chloroquine-resistant & sensitive strains) | Aqueous/ethanolic leaf & bark extracts | 100% inhibition at 100 µg/mL (leaf aqueous); bark ethanolic IC50 = 19.08 µg/mL | Heme detoxification interference; ROS imbalance; mitochondrial disruption | Strong (multiple in vitro studies) | [67,68] |
In vitro (molecular target) | Mangiferin (leaf isolate) | Inhibition of serine hydroxymethyltransferase (SHMT) | Enzyme inhibition (SHMT blockade) | Moderate–Strong (in vitro & in silico evidence) | [69] | |
In vivo (P. berghei-infected mice) | Crude extracts (various solvents) | 100% schizont elimination; reduced parasitemia; hepatoprotective & haematoprotective effects | Enzyme inhibition (SHMT blockade) | Strong (animal validation) | [62,73] | |
Leishmania spp. (Leishmaniasis) | In vitro (L. donovani promastigotes) | Petroleum ether, chloroform, methanol leaf extracts | Methanol extract IC50 = 2.74 µg/mL | Not defined | Moderate | [75] |
In vitro (L. amazonensis promastigotes) | Essential oils (var. Rosa, Espada) | Rosa IC50 = 39.1 µg/mL; Espada IC50 = 23.0 µg/mL | Terpene-driven activity (β-pinene, terpinolene) | Moderate | [76] | |
In vitro (L. amazonensis promastigotes & amastigotes) | Crude extract | Selective against promastigotes; IC50 = 60.1 µg/mL (amastigotes) | Possible polyamine biosynthesis inhibition (ornithine decarboxylase) | Moderate | [79] | |
Trypanosoma spp. (Trypanosomiasis) | In vivo (T. congolense-infected rats) | Aqueous leaf extract | Reduced mortality; higher plasma proteins; survival benefit | Hypothesized immune stimulation | Weak (single preliminary study) | [86] |
In vitro (T. brucei) | Stem bark crude extract | IC50 = 77.37 µg/mL | Possible enzyme inhibition (trypanothione reductase, polyamine pathway) | Weak (single screen) | [87] | |
Toxoplasma gondii (Toxoplasmosis) | No direct studies | No direct studies | No direct studies | Hypothetical activity via triterpenes (e.g., β-amyrin); mitochondrial/ROS disruption based on analogues | Very weak (no direct evidence) | [93,94] |
Entamoeba histolytica/Acanthamoeba spp. (Amoebiasis & Acanthamoebiasis) | No direct studies | No direct studies | No direct studies | Hypothetical membrane disruption; inhibition of cyst formation | Very weak (no direct experimental evidence) | [61,99] |
Parasite/Model | Extract/Compound | Experimental System | Main Findings (IC50, % Inhibition, Worm Burden Reduction) | References |
---|---|---|---|---|
Haemonchus contortus (nematode) | Aqueous leaf extract (tannins, flavones, flavonoids) | In vitro egg hatch and larval development assays; in vivo infection model | 81.6% egg hatch inhibition at 30 mg/mL; significant reduction in larval development at 7.8 mg/g; in vivo: moderate efficacy, fecal egg count reduction 22.7% | [101] |
Haemonchus spp. (nematode) | Aqueous fruit extract | In vitro larval development assay | 100% inhibition of larval development at 100 mg/mL | [102] |
Haemonchus spp. (nematode) | Aqueous fruit extract | In vitro larval development assay | Confirmed 100% inhibition of larval development | [103] |
Pheretima posthuma (earthworm model) | Bark extracts (chloroform, ethanolic, aqueous) | In vitro paralysis assay (pin-prick method) | Ethanolic extract induced paralysis in 12.29 min at 80 mg/mL (vs. 2.54 min positive control) | [104] |
Pheretima posthuma (earthworm model) | Ethanolic bark extract formulation | In vitro paralysis assay | Paralysis achieved in 2.36–4.73 min, comparable to positive control (2.1–3 min); petroleum ether yielded only steroids, less active | [105] |
Trichinella spiralis (nematode) | Isolated mangiferin vs. crude aqueous extract | In vivo mouse infection | Mangiferin (50 mg/kg) significantly reduced encysted larvae and adult worms; more effective than crude extract | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendonça, D.; Tan, Y.-Z.; Lor, Y.-X.; Ng, Y.-J.; Siyadatpadah, A.; Lim, C.-L.; Norouzi, R.; Pandey, R.; Lee, W.-C.; Bodade, R.; et al. A Review on Phytochemistry, Ethnopharmacology, and Antiparasitic Potential of Mangifera indica L. Pharmaceuticals 2025, 18, 1576. https://doi.org/10.3390/ph18101576
Mendonça D, Tan Y-Z, Lor Y-X, Ng Y-J, Siyadatpadah A, Lim C-L, Norouzi R, Pandey R, Lee W-C, Bodade R, et al. A Review on Phytochemistry, Ethnopharmacology, and Antiparasitic Potential of Mangifera indica L. Pharmaceuticals. 2025; 18(10):1576. https://doi.org/10.3390/ph18101576
Chicago/Turabian StyleMendonça, Diana, Yen-Zhi Tan, Yi-Xin Lor, Yi-Jing Ng, Abolghasem Siyadatpadah, Chooi-Ling Lim, Roghayeh Norouzi, Roma Pandey, Wenn-Chyau Lee, Ragini Bodade, and et al. 2025. "A Review on Phytochemistry, Ethnopharmacology, and Antiparasitic Potential of Mangifera indica L." Pharmaceuticals 18, no. 10: 1576. https://doi.org/10.3390/ph18101576
APA StyleMendonça, D., Tan, Y.-Z., Lor, Y.-X., Ng, Y.-J., Siyadatpadah, A., Lim, C.-L., Norouzi, R., Pandey, R., Lee, W.-C., Bodade, R., Brandon-Mong, G.-J., Labana, R. V., Jimoh, T. O., Verma, A. K., Hailu, T., Sundar, S. S., Sherasiya, A., Oliveira, S. M. R., Girol, A. P., ... Pereira, M. d. L. (2025). A Review on Phytochemistry, Ethnopharmacology, and Antiparasitic Potential of Mangifera indica L. Pharmaceuticals, 18(10), 1576. https://doi.org/10.3390/ph18101576