Special Issue "The Perspectives of Plant Natural Products for Mitigation of Obesity"

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Phytochemicals and Human Health".

Deadline for manuscript submissions: closed (25 April 2022) | Viewed by 2430

Special Issue Editor

Dr. Fang Chen
E-Mail Website
Guest Editor
College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 10083, China
Interests: food nutrition and human health, with a focus on the molecular mechanisms of phytochemical compounds against chronic inflammation; formation, toxicity and intervention of food processing contaminants, especially acrylamide
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The incidence of obesity has dramatically grown in recent decades, which has placed great pressure and burden on people's lives and the economy. Drug treatment of obesity may have certain side effects, while surgical treatment also has risks and will cause negative emotions in people. Weight loss obtained through diet and exercise leads to a significant reduction in morbidity and mortality. Recently, there has been increasing interest in the possible beneficial effects of dietary supplements, which are products intended to "supplement" the diet. In addition to vitamins, minerals and amino acids, dietary supplements can contain herbs or other botanicals and many other ingredients. They are not drugs and are not intended to treat diseases; they are adjuvants in the management of obesity and metabolic diseases. As a consequence, there is a great need to determine specific dietary supplements for the management of obesity. This will be the content of this Special Issue.

Dr. Fang Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dietary supplement
  • obesity
  • botanicals
  • nutrients
  • weight loss

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Distinct AMPK-Mediated FAS/HSL Pathway Is Implicated in the Alleviating Effect of Nuciferine on Obesity and Hepatic Steatosis in HFD-Fed Mice
Nutrients 2022, 14(9), 1898; https://doi.org/10.3390/nu14091898 - 30 Apr 2022
Viewed by 441
Abstract
Nuciferine (Nuci), the main aporphine alkaloid component in lotus leaf, was reported to reduce lipid accumulation in vitro. Herein we investigated whether Nuci prevents obesity in high fat diet (HFD)-fed mice and the underlying mechanism in liver/HepG2 hepatocytes and epididymal white adipose tissue [...] Read more.
Nuciferine (Nuci), the main aporphine alkaloid component in lotus leaf, was reported to reduce lipid accumulation in vitro. Herein we investigated whether Nuci prevents obesity in high fat diet (HFD)-fed mice and the underlying mechanism in liver/HepG2 hepatocytes and epididymal white adipose tissue (eWAT) /adipocytes. Male C57BL/6J mice were fed with HFD supplemented with Nuci (0.10%) for 12 weeks. We found that Nuci significantly reduced body weight and fat mass, improved glycolipid profiles, and enhanced energy expenditure in HFD-fed mice. Nuci also ameliorated hepatic steatosis and decreased the size of adipocytes. Furthermore, Nuci remarkably promoted the phosphorylation of AMPK, suppressed lipogenesis (SREBP1, FAS, ACC), promoted lipolysis (HSL, ATGL), and increased the expressions of adipokines (FGF21, ZAG) in liver and eWAT. Besides, fatty acid oxidation in liver and thermogenesis in eWAT were also activated by Nuci. Similar results were further observed at cellular level, and these beneficial effects of Nuci in cells were abolished by an effective AMPK inhibitor compound C. In conclusion, Nuci supplementation prevented HFD-induced obesity, attenuated hepatic steatosis, and reduced lipid accumulation in liver/hepatocytes and eWAT/adipocytes through regulating AMPK-mediated FAS/HSL pathway. Our findings provide novel insight into the clinical application of Nuci in treating obesity and related complications. Full article
(This article belongs to the Special Issue The Perspectives of Plant Natural Products for Mitigation of Obesity)
Show Figures

Graphical abstract

Article
Liquiritigenin Inhibits Lipid Accumulation in 3T3-L1 Cells via mTOR-Mediated Regulation of the Autophagy Mechanism
Nutrients 2022, 14(6), 1287; https://doi.org/10.3390/nu14061287 - 18 Mar 2022
Viewed by 508
Abstract
Liquiritigenin (LQG) is a natural flavonoid from the herb Glycyrrhiza uralensis Fisch that exhibits multiple biological activities. However, its specific role in antiobesity and its related underlying molecular mechanisms remain unknown. The primary purpose of this study is to explore the effects and [...] Read more.
Liquiritigenin (LQG) is a natural flavonoid from the herb Glycyrrhiza uralensis Fisch that exhibits multiple biological activities. However, its specific role in antiobesity and its related underlying molecular mechanisms remain unknown. The primary purpose of this study is to explore the effects and regulatory mechanisms of LQG on lipid accumulation in 3T3-L1 adipocytes. The results show that LQG significantly reduced triglyceride levels and downregulated the expression of transcription factors such as CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 adipocytes. Additionally, the expression of sterol-regulatory element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN) involved in lipogenesis was reduced by treatment with LQG. The protein expression levels of light chain 3B (LC3B), autophagy-related protein 7 (ATG7) and p62 were also modulated by LQG, leading to the suppression of autophagy. Further, LQG activated the phosphorylation of the mammalian target of rapamycin (mTOR), the inhibition of which was followed by the restored expression of autophagy-related proteins. Pretreatment with an mTOR inhibitor also reverted the expression of several genes or proteins involved in lipid synthesis. These results suggest that LQG inhibited lipid accumulation via mTOR-mediated autophagy in 3T3-L1 white adipocytes, indicating the role of LQG as a potential natural bioactive component for use in dietary supplements for preventing obesity. Full article
(This article belongs to the Special Issue The Perspectives of Plant Natural Products for Mitigation of Obesity)
Show Figures

Figure 1

Article
Anti-Obesity Effects of Polymethoxyflavone-Rich Fraction from Jinkyool (Citrus sunki Hort. ex Tanaka) Leaf on Obese Mice Induced by High-Fat Diet
Nutrients 2022, 14(4), 865; https://doi.org/10.3390/nu14040865 - 18 Feb 2022
Viewed by 677
Abstract
Polymethoxyflavones (PMFs) are flavonoids exclusively found in certain citrus fruits and have been reported to be beneficial to human health. Most studies have been conducted with PMFs isolated from citrus peels, while there is no study on PMFs isolated from leaves. In this [...] Read more.
Polymethoxyflavones (PMFs) are flavonoids exclusively found in certain citrus fruits and have been reported to be beneficial to human health. Most studies have been conducted with PMFs isolated from citrus peels, while there is no study on PMFs isolated from leaves. In this study, we prepared a PMF-rich fraction (PRF) from the leaves of Citrus sunki Hort ex. Tanaka (Jinkyool) and investigated whether the PRF could improve metabolic decline in obese mice induced by a high-fat diet (HFD) for 5 weeks. The HFD-induced obese mice were assigned into HFD, OR (HFD + orlistat at 15.6 mg/kg of body weight/day), and PRF (HFD + 50, 100, and 200 mg/kg of body weight/day) groups. Orlistat and PRF were orally administered for 5 weeks. At the end of the experiment, the serum biochemical parameters, histology, and gene expression profiles in the tissues of each group were analyzed. The body weight gain of the obese mice was significantly reduced after orlistat and PRF administration for 5 weeks. PRF effectively improved HFD-induced insulin resistance and dyslipidemia. Histological analysis in the liver demonstrated that PRF decreased adipocyte size and potentially improved the liver function, as it inhibited the incidence of fatty liver. PRF activated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and hormone-sensitive lipase (HSL) in HFD-induced obese mice. Moreover, liver transcriptome analysis revealed that PRF administration enriched genes mainly related to fatty-acid metabolism and immune responses. Overall, these results suggest that the PRF exerted an anti-obesity effect via the modulation of lipid metabolism. Full article
(This article belongs to the Special Issue The Perspectives of Plant Natural Products for Mitigation of Obesity)
Show Figures

Graphical abstract

Article
Olfactory Stimulation by Fennel (Foeniculum vulgare Mill.) Essential Oil Improves Lipid Metabolism and Metabolic Disorders in High Fat-Induced Obese Rats
Nutrients 2022, 14(4), 741; https://doi.org/10.3390/nu14040741 - 10 Feb 2022
Viewed by 503
Abstract
In this study, odor components were analyzed using gas chromatography/mass spectrometry (GC/MS) and solid-phase microextraction (SPME), and odor-active compounds (OACs) were identified using GC-olfactometry (GC-O). Among the volatile compounds identified through GC-O, p-anisaldehyde, limonene, estragole, anethole, and trans-anethole elicit the fennel odor. [...] Read more.
In this study, odor components were analyzed using gas chromatography/mass spectrometry (GC/MS) and solid-phase microextraction (SPME), and odor-active compounds (OACs) were identified using GC-olfactometry (GC-O). Among the volatile compounds identified through GC-O, p-anisaldehyde, limonene, estragole, anethole, and trans-anethole elicit the fennel odor. In particular, trans-anethole showed the highest odor intensity and content. Changes in body weight during the experimental period showed decreasing values of fennel essential oil (FEO)-inhaled groups, with both body fat and visceral fat showing decreased levels. An improvement in the body’s lipid metabolism was observed, as indicated by the increased levels of cholesterol and triglycerides and decreased levels of insulin in the FEO-inhaled groups compared to group H. Furthermore, the reduction in systolic blood pressure and pulse through the inhalation of FEO was confirmed. Our results indicated that FEO inhalation affected certain lipid metabolisms and cardiovascular health, which are obesity-related dysfunction indicators. Accordingly, this study can provide basic research data for further research as to protective applications of FEO, as well as their volatile profiles. Full article
(This article belongs to the Special Issue The Perspectives of Plant Natural Products for Mitigation of Obesity)
Show Figures

Graphical abstract

Back to TopTop