Applications of Novel Nanomaterials in Flexible Organic Electronics

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanophotonics Materials and Devices".

Deadline for manuscript submissions: 11 July 2025 | Viewed by 1386

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, 15310 Athens, Greece
Interests: interface engineering; organic solar cells; organic light-emitting diodes; perovskite solar cells; transition metal oxide thin films
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Flexible organic optoelectronic devices are in great progress due to the variety of applications, including curved or paper-like displays, flexible solid-state lighting devices, and bendable smartphones. However, the major challenge to their extensive commercialization is their low stability. For this Special Issue, we aim to highlight newly emerging nanomaterials employed in flexible organic optoelectronic devices. In particular, we will focus on nanomaterials serving as flexible substrates, transparent conductive electrodes, active layers, and interfacial layers.

Dr. Anastasia Soultati
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flexible electronics
  • flexible substrates
  • stability
  • interface engineering
  • organic light-emitting diodes
  • organic solar cells
  • organic transistors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

46 pages, 11894 KiB  
Review
Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method
by Meysam Heydari Gharahcheshmeh
Nanomaterials 2025, 15(6), 452; https://doi.org/10.3390/nano15060452 - 16 Mar 2025
Cited by 1 | Viewed by 987
Abstract
Chemical vapor deposition (CVD) is a highly adaptable manufacturing technique used to fabricate high-quality thin films, making it essential across numerous industries. As materials fabrication processes progress, CVD has advanced to enable the precise deposition of both inorganic 2D materials, such as graphene [...] Read more.
Chemical vapor deposition (CVD) is a highly adaptable manufacturing technique used to fabricate high-quality thin films, making it essential across numerous industries. As materials fabrication processes progress, CVD has advanced to enable the precise deposition of both inorganic 2D materials, such as graphene and transition metal dichalcogenides, and high-quality polymeric thin films, offering excellent conformality and precise nanostructure control on a wide range of substrates. Conjugated conducting polymers have emerged as promising materials for next-generation electronic, optoelectronic, and energy storage devices due to their unique combination of electrical conductivity, optical transparency, ionic transport, and mechanical flexibility. Oxidative CVD (oCVD) involves the spontaneous reaction of oxidant and monomer vapors upon their adsorption onto the substrate surface, resulting in step-growth polymerization that commonly produces conducting or semiconducting polymer thin films. oCVD has gained significant attention for its ability to fabricate conjugated conducting polymers under vacuum conditions, allowing precise control over film thickness, doping levels, and nanostructure engineering. The low to moderate deposition temperature in the oCVD method enables the direct integration of conducting and semiconducting polymer thin films onto thermally sensitive substrates, including plants, paper, textiles, membranes, carbon fibers, and graphene. This review explores the fundamentals of the CVD process and vacuum-based manufacturing, while also highlighting recent advancements in the oCVD method for the fabrication of conjugated conducting and semiconducting polymer thin films. Full article
(This article belongs to the Special Issue Applications of Novel Nanomaterials in Flexible Organic Electronics)
Show Figures

Figure 1

Back to TopTop