Current Trends in Nanostructured Biosensors: A Journey into the Future of Detection and Innovation

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Environmental Nanoscience and Nanotechnology".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 549

Special Issue Editor


E-Mail Website
Guest Editor
Department of Analytical Chemistry, Director Doctoral School of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
Interests: sensors and biosensors addressing current emerging problems of clinical; food and environmental importance; bioanalytical chemistry focusing on investigations of basic biochemical mechanisms at bio-interfaces; biomimetic materials and artificial receptors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanotechnology is pivotal to advancing the field of biosensors. The advent of nanostructured materials has opened new avenues for the development of next-generation biosensors. By enabling precise control over the design of electrode interfaces at the nanoscale and harnessing the unique properties of nanomaterials, we can create innovative biosensing platforms with significantly improved capabilities.

In recent years, biosensor devices employing diverse materials and operating through various modes have gained considerable attention due to their broad array of applications. These include clinical laboratories, food analysis, environmental monitoring, protein engineering, drug discovery, and security.

This Special Issue seeks to spotlight important research and advancements in biosensors, with a particular emphasis on the nanoscale dimensions of materials such as metal nanoparticles, metal oxide nanoparticles, metal and carbon quantum dots, graphene, carbon nanotubes, nanowires, nanocomposites, nanoporous anodic alumina, mesoporous silica, porous silicon, and polystyrene nanochannels. These materials enhance sensitivity and facilitate the integration of innovative transduction principles, including enhanced electrochemical, optical, and catalytic activities, as well as superparamagnetic properties.

We invite contributions that explore recent approaches to constructing label-free nanostructured biosensors, including the use of self-assembled peptide nanostructures as building blocks. We particularly welcome studies focused on the development of portable point-of-care electronic devices for applications ranging from environmental analysis to biomedical diagnostics.

This Special Issue will encompass both review articles and original research papers on this topic.

Prof. Dr. Camelia Bala
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biosensors
  • materials
  • biomolecules
  • environment, clinical and food quality control
  • nanostructured biosensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

34 pages, 6501 KiB  
Review
Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms
by Muhammad A. Butt, B. Imran Akca and Xavier Mateos
Nanomaterials 2025, 15(10), 731; https://doi.org/10.3390/nano15100731 - 13 May 2025
Viewed by 398
Abstract
Integrated photonic biosensors are revolutionizing lab-on-a-chip technologies by providing highly sensitive, miniaturized, and label-free detection solutions for a wide range of biological and chemical targets. This review explores the foundational principles behind their operation, including the use of resonant photonic structures such as [...] Read more.
Integrated photonic biosensors are revolutionizing lab-on-a-chip technologies by providing highly sensitive, miniaturized, and label-free detection solutions for a wide range of biological and chemical targets. This review explores the foundational principles behind their operation, including the use of resonant photonic structures such as microring and whispering gallery mode resonators, as well as interferometric and photonic crystal-based designs. Special focus is given to the design strategies that optimize light–matter interaction, enhance sensitivity, and enable multiplexed detection. We detail state-of-the-art fabrication approaches compatible with complementary metal-oxide-semiconductor processes, including the use of silicon, silicon nitride, and hybrid material platforms, which facilitate scalable production and seamless integration with microfluidic systems. Recent advancements are highlighted, including the implementation of optofluidic photonic crystal cavities, cascaded microring arrays with subwavelength gratings, and on-chip detector arrays capable of parallel biosensing. These innovations have achieved exceptional performance, with detection limits reaching the parts-per-billion level and real-time operation across various applications such as clinical diagnostics, environmental surveillance, and food quality assessment. Although challenges persist in handling complex biological samples and achieving consistent large-scale fabrication, the emergence of novel materials, advanced nanofabrication methods, and artificial intelligence-driven data analysis is accelerating the development of next-generation photonic biosensing platforms. These technologies are poised to deliver powerful, accessible, and cost-effective diagnostic tools for practical deployment across diverse settings. Full article
Show Figures

Figure 1

Back to TopTop