Synthesis and Ferroelectric, Photoelectric, Magnetic Properties of Thin Films

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanofabrication and Nanomanufacturing".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 5773

Special Issue Editor


E-Mail Website
Guest Editor
Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing, China
Interests: ferroelectric film; design of structure; synthesis of thin films

Special Issue Information

Dear Colleagues,

Nanostructured thin films have attracted a great deal of interest over the last few decades due to their unique, size-dependent, physicochemical properties. Consequently, they have been exploited as promising materials for a wide range of applications, including smart coating, effective drug delivery systems, electrocatalysis, memorizer and highly-sensitive sensors.

We invite you to contribute to this Special Issue, which is devoted to the synthesis of thin films and their ferroelectric, photoelectric and magnetic properties as well as applications. We expect new original results and interpretations for the synthesis of nanostructured thin films, with special emphasis being given to complex characterizations and multifunctional applications. Different formats of articles, including full articles, review papers and short communications, are welcome for submission.

Prof. Dr. Linxing Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thin film
  • synthesis
  • ferroelectric
  • photoelectric
  • magnetic

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2922 KiB  
Article
Producing Freestanding Single-Crystal BaTiO3 Films through Full-Solution Deposition
by Guoqiang Xi, Hangren Li, Dongfei Lu, Xudong Liu, Xiuqiao Liu, Jie Tu, Qianqian Yang, Jianjun Tian and Linxing Zhang
Nanomaterials 2024, 14(17), 1456; https://doi.org/10.3390/nano14171456 - 7 Sep 2024
Viewed by 859
Abstract
Strontium aluminate, with suitable lattice parameters and environmentally friendly water solubility, has been strongly sought for use as a sacrificial layer in the preparation of freestanding perovskite oxide thin films in recent years. However, due to this material’s inherent water solubility, the methods [...] Read more.
Strontium aluminate, with suitable lattice parameters and environmentally friendly water solubility, has been strongly sought for use as a sacrificial layer in the preparation of freestanding perovskite oxide thin films in recent years. However, due to this material’s inherent water solubility, the methods used for the preparation of epitaxial films have mainly been limited to high-vacuum techniques, which greatly limits these films’ development. In this study, we prepared freestanding single-crystal perovskite oxide thin films on strontium aluminate using a simple, easy-to-develop, and low-cost chemical full-solution deposition technique. We demonstrate that a reasonable choice of solvent molecules can effectively reduce the damage to the strontium aluminate layer, allowing successful epitaxy of perovskite oxide thin films, such as 2-methoxyethanol and acetic acid. Molecular dynamics simulations further demonstrated that this is because of their stronger adsorption capacity on the strontium aluminate surface, which enables them to form an effective protective layer to inhibit the hydration reaction of strontium aluminate. Moreover, the freestanding film can still maintain stable ferroelectricity after release from the substrate, which provides an idea for the development of single-crystal perovskite oxide films and creates an opportunity for their development in the field of flexible electronic devices. Full article
Show Figures

Figure 1

14 pages, 5319 KiB  
Article
Ultrahigh Electrostrictive Effect in Lead-Free Sodium Bismuth Titanate-Based Relaxor Ferroelectric Thick Film
by Yizhuo Li, Jinyan Zhao, Zhe Wang, Kun Zheng, Jie Zhang, Chuying Chen, Lingyan Wang, Genshui Wang, Xin Li, Yulong Zhao, Gang Niu and Wei Ren
Nanomaterials 2024, 14(17), 1411; https://doi.org/10.3390/nano14171411 - 29 Aug 2024
Viewed by 3593
Abstract
In recent years, the development of environmentally friendly, lead-free ferroelectric films with prominent electrostrictive effects have been a key area of focus due to their potential applications in micro-actuators, sensors, and transducers for advanced microelectromechanical systems (MEMS). This work investigated the enhanced electrostrictive [...] Read more.
In recent years, the development of environmentally friendly, lead-free ferroelectric films with prominent electrostrictive effects have been a key area of focus due to their potential applications in micro-actuators, sensors, and transducers for advanced microelectromechanical systems (MEMS). This work investigated the enhanced electrostrictive effect in lead-free sodium bismuth titanate-based relaxor ferroelectric films. The films, composed of (Bi0.5Na0.5)0.8−xBaxSr0.2TiO3 (BNBST, x = 0.02, 0.06, and 0.11), with thickness around 1 μm, were prepared using a sol-gel method on Pt/TiO2/SiO2/Si substrates. By varying the Ba2+ content, the crystal structure, morphology, and electrical properties, including dielectric, ferroelectric, strain, and electromechanical performance, were investigated. The films exhibited a single pseudocubic structure without preferred orientation. A remarkable strain response (S > 0.24%) was obtained in the films (x = 0.02, 0.06) with the coexistence of nonergodic and ergodic relaxor phases. Further, in the x = 0.11 thick films with an ergodic relaxor state, an ultrahigh electrostrictive coefficient Q of 0.32 m4/C2 was achieved. These findings highlight the potential of BNBST films as high-performance, environmentally friendly electrostrictive films for advanced microelectromechanical systems (MEMS) and electronic devices. Full article
Show Figures

Figure 1

11 pages, 3201 KiB  
Article
Substrate Charge Transfer Induced Ferromagnetism in MnSe/SrTiO3 Ultrathin Films
by Chun-Hao Huang, Chandra Shekar Gantepogu, Peng-Jen Chen, Ting-Hsuan Wu, Wei-Rein Liu, Kung-Hsuan Lin, Chi-Liang Chen, Ting-Kuo Lee, Ming-Jye Wang and Maw-Kuen Wu
Nanomaterials 2024, 14(16), 1355; https://doi.org/10.3390/nano14161355 - 16 Aug 2024
Viewed by 921
Abstract
The observation of superconductivity in MnSe at 12 GPa motivated us to investigate whether superconductivity could be induced in MnSe at ambient conditions. A strain-induced structural change in the ultrathin film could be one route to the emergence of superconductivity. In this report, [...] Read more.
The observation of superconductivity in MnSe at 12 GPa motivated us to investigate whether superconductivity could be induced in MnSe at ambient conditions. A strain-induced structural change in the ultrathin film could be one route to the emergence of superconductivity. In this report, we present the physical property of MnSe ultrathin films, which become tetragonal (stretched ab-plane and shortened c-axis) on a (001) SrTiO3 (STO) substrate, prepared by the pulsed laser deposition (PLD) method. The physical properties of the tetragonal MnSe ultrathin films exhibit very different characteristics from those of the thick films and polycrystalline samples. The tetragonal MnSe films show substantial conductivity enhancement, which could be associated with the presence of superparamagnetism. The optical absorption data indicate that the electron transition through the indirect bandgap to the conduction band is significantly enhanced in tetragonal MnSe. Furthermore, the X-ray Mn L-edge absorption results also reveal an increase in unoccupied state valance bands. This theoretical study suggests that charge transfer from the substrate plays an important role in conductivity enhancement and the emergence of a ferromagnetic order that leads to superparamagnetism. Full article
Show Figures

Figure 1

Back to TopTop