molecules-logo

Journal Browser

Journal Browser

Special Issue "Signaling Molecules: Hydrogen Sulfide and Polysulfide"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Chemical Biology".

Deadline for manuscript submissions: closed (15 May 2019).

Special Issue Editor

Prof. Dr. Claus Jacob
Website
Guest Editor
Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
Interests: bioorganic chemistry; catalytic sensor/effector agents; epistemology; intracellular diagnostics; nanotechnology; natural products; reactive sulfur and selenium species; redox regulation via the cellular thiolstat
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

During the last decade, various inorganic polysulfides (H2Sx, x ≥ 2) have emerged as potential and potent cellular signalling molecules. Numerous (bio)chemical reactions and biological activities have been ascribed to these astonishingly simple reactive sulfur species (RSS), ranging from chemopreventive and antioxidant properties to intricate posttranslational protein modifications and redox signalling. There is even some evidence that such molecules may modulate the intracellular redox status and induce apoptosis in selected target cells.

Indeed, whilst inorganic polysulfides are—chemically speaking—among the most “primitive” molecules, i.e. sulfur chains composed exclusively of sulfur and some hydrogen, their reactivity resembles the one of H2S on the one side and that of organic polysulfides/polysulfanes (RSxR, x > 2), such as the diallylsulfanes from garlic, on the other. An unassuming molecule such as S22-, for instance, is a fine reducing agent and a ligand for metal ions, just like H2S; still, it is also an oxidant able to modify cysteine residues via S-thiolation. There has even been some suspicion that the biochemistry assigned traditionally to H2S in part may be one of these polysulfides.

Undoubtedly, the biological activities of polysulfides are highly complicated, and we are just at the beginning of understanding some of them. Since these RSS are intrinsically difficult to detect, especially in complex biological environments, such investigations are inherently tedious and often marred by artefacts. Still, there has been notable progress in the analytics as well as the redox biology of H2Sx over the years, and it is now a good time to take stock of the present knowledge and look at future developments in this emerging field. As part of this Special Issue, chemistry and biochemistry will join up to solve some of the challenges of sulfur redox biology, from the appearance, activities, and possible applications of H2S and H2Sx to the interactions of such species with thiols, disulfides, selenium, cysteine proteins, and redox signalling via the cellular thiolstat.

Prof. Dr. Claus Jacob
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cellular thiolstat
  • cysteine
  • polysulfides
  • Reactive Sulfur Species
  • redox modulation
  • signaling

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Characterization of Polysulfides, Polysulfanes, and Other Unique Species in the Reaction between GSNO and H2S
Molecules 2019, 24(17), 3090; https://doi.org/10.3390/molecules24173090 - 26 Aug 2019
Cited by 3Correction
Abstract
Glutathione-based products, GSnX, of the reaction of hydrogen sulfide, H2S, S-nitroso glutathione, and GSNO, at varied stoichiometries have been analyzed by liquid chromatography high-resolution mass spectrometry (LC-HRMS) and chemical trapping experiments. A wide variety of glutathione-based species with catenated [...] Read more.
Glutathione-based products, GSnX, of the reaction of hydrogen sulfide, H2S, S-nitroso glutathione, and GSNO, at varied stoichiometries have been analyzed by liquid chromatography high-resolution mass spectrometry (LC-HRMS) and chemical trapping experiments. A wide variety of glutathione-based species with catenated sulfur chains have been identified including sulfanes (GSSnG), sulfides (GSSnH), and sulfenic acids (GSnOH); sulfinic (GSnO2H) and sulfonic (GSnO3H) acids are also seen in reactions exposed to air. The presence of each species of GSnX within the original reaction mixtures was confirmed using Single Ion Chromatograms (SICs), to demonstrate the separation on the LC column, and given approximate quantification by the peak area of the SIC. Further, confirmation for different GSnX families was obtained by trapping with species-specific reagents. Several unique GSnX families have been characterized, including bridging mixed di- and tetra-valent polysulfanes and internal trithionitrates (GSNHSnH) with polysulfane branches. Competitive trapping experiments suggest that the polysulfane chains are formed via the intermediacy of sulfenic acid species, GSSnOH. In the presence of radical trap vinylcyclopropane (VCP) the relative distributions of polysulfane speciation are relatively unaffected, suggesting that radical coupling is not a dominant pathway. Therefore, we suggest polysulfane catenation occurs via reaction of sulfides with sulfenic acids. Full article
(This article belongs to the Special Issue Signaling Molecules: Hydrogen Sulfide and Polysulfide)
Show Figures

Graphical abstract

Open AccessArticle
Distribution of Polysulfide in Human Biological Fluids and Their Association with Amylase and Sperm Activities
Molecules 2019, 24(9), 1689; https://doi.org/10.3390/molecules24091689 - 30 Apr 2019
Cited by 6
Abstract
Intracellular polysulfide could regulate the redox balance via its anti-oxidant activity. However, the existence of polysulfide in biological fluids still remains unknown. Recently, we developed a quantitative analytical method for polysulfide and discovered that polysulfide exists in plasma and responds to oxidative stress. [...] Read more.
Intracellular polysulfide could regulate the redox balance via its anti-oxidant activity. However, the existence of polysulfide in biological fluids still remains unknown. Recently, we developed a quantitative analytical method for polysulfide and discovered that polysulfide exists in plasma and responds to oxidative stress. In this study, we confirmed the presence of polysulfide in other biological fluids, such as semen and nasal discharge. The levels of polysulfide in these biological fluids from healthy volunteers (n = 9) with identical characteristics were compared. Additionally, the circadian rhythm of plasma polysulfide was also investigated. The polysulfide levels detected from nasal discharge and seminal fluid were approximately 400 and 600 μM, respectively. No correlation could be found between plasma polysulfide and the polysulfide levels of tear, saliva, and nasal discharge. On the other hand, seminal polysulfide was positively correlated with plasma polysulfide, and almost all polysulfide contained in semen was found in seminal fluid. Intriguingly, saliva and seminal polysulfide strongly correlated with salivary amylase and sperm activities, respectively. These results provide a foundation for scientific breakthroughs in various research areas like infertility and the digestive system process. Full article
(This article belongs to the Special Issue Signaling Molecules: Hydrogen Sulfide and Polysulfide)
Show Figures

Graphical abstract

Open AccessArticle
Sulfide (Na2S) and Polysulfide (Na2S2) Interacting with Doxycycline Produce/Scavenge Superoxide and Hydroxyl Radicals and Induce/Inhibit DNA Cleavage
Molecules 2019, 24(6), 1148; https://doi.org/10.3390/molecules24061148 - 22 Mar 2019
Cited by 5
Abstract
Doxycycline (DOXY) is an antibiotic routinely prescribed in human and veterinary medicine for antibacterial treatment, but it has also numerous side effects that include oxidative stress, inflammation, cancer or hypoxia-induced injury. Endogenously produced hydrogen sulfide (H2S) and polysulfides affect similar biological [...] Read more.
Doxycycline (DOXY) is an antibiotic routinely prescribed in human and veterinary medicine for antibacterial treatment, but it has also numerous side effects that include oxidative stress, inflammation, cancer or hypoxia-induced injury. Endogenously produced hydrogen sulfide (H2S) and polysulfides affect similar biological processes, in which reactive oxygen species (ROS) play a role. Herein, we have studied the interaction of DOXY with H2S (Na2S) or polysulfides (Na2S2, Na2S3 and Na2S4) to gain insights into the biological effects of intermediates/products that they generate. To achieve this, UV-VIS, EPR spectroscopy and plasmid DNA (pDNA) cleavage assay were employed. Na2S or Na2S2 in a mixture with DOXY, depending on ratio, concentration and time, displayed bell-shape kinetics in terms of producing/scavenging superoxide and hydroxyl radicals and decomposing hydrogen peroxide. In contrast, the effects of individual compounds (except for Na2S2) were hardly observable. In addition, DOXY, as well as oxytetracycline and tetracycline, interacting with Na2S or other studied polysulfides reduced the cPTIO radical. Tetracyclines induced pDNA cleavage in the presence of Na2S. Interestingly, they inhibited pDNA cleavage induced by other polysulfides. In conclusion, sulfide and polysulfides interacting with tetracyclines produce/scavenge free radicals, indicating a consequence for free radical biology under conditions of ROS production and tetracyclines administration. Full article
(This article belongs to the Special Issue Signaling Molecules: Hydrogen Sulfide and Polysulfide)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Reactivity of Small Oxoacids of Sulfur
Molecules 2019, 24(15), 2768; https://doi.org/10.3390/molecules24152768 - 30 Jul 2019
Cited by 7
Abstract
Oxidation of sulfide to sulfate is known to consist of several steps. Key intermediates in this process are the so-called small oxoacids of sulfur (SOS)—sulfenic HSOH (hydrogen thioperoxide, oxadisulfane, or sulfur hydride hydroxide) and sulfoxylic S(OH)2 acids. Sulfur monoxide can be considered [...] Read more.
Oxidation of sulfide to sulfate is known to consist of several steps. Key intermediates in this process are the so-called small oxoacids of sulfur (SOS)—sulfenic HSOH (hydrogen thioperoxide, oxadisulfane, or sulfur hydride hydroxide) and sulfoxylic S(OH)2 acids. Sulfur monoxide can be considered as a dehydrated form of sulfoxylic acid. Although all of these species play an important role in atmospheric chemistry and in organic synthesis, and are also invoked in biochemical processes, they are quite unstable compounds so much so that their physical and chemical properties are still subject to intense studies. It is well-established that sulfoxylic acid has very strong reducing properties, while sulfenic acid is capable of both oxidizing and reducing various substrates. Here, in this review, the mechanisms of sulfide oxidation as well as data on the structure and reactivity of small sulfur-containing oxoacids, sulfur monoxide, and its precursors are discussed. Full article
(This article belongs to the Special Issue Signaling Molecules: Hydrogen Sulfide and Polysulfide)
Show Figures

Figure 1

Open AccessReview
From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants
Molecules 2019, 24(12), 2282; https://doi.org/10.3390/molecules24122282 - 19 Jun 2019
Cited by 11
Abstract
Sulfur is an essential element in determining the productivity and quality of agricultural products. It is also an element associated with tolerance to biotic and abiotic stress in plants. In agricultural practice, sulfur has broad use in the form of sulfate fertilizers and, [...] Read more.
Sulfur is an essential element in determining the productivity and quality of agricultural products. It is also an element associated with tolerance to biotic and abiotic stress in plants. In agricultural practice, sulfur has broad use in the form of sulfate fertilizers and, to a lesser extent, as sulfite biostimulants. When used in the form of bulk elemental sulfur, or micro- or nano-sulfur, applied both to the soil and to the canopy, the element undergoes a series of changes in its oxidation state, produced by various intermediaries that apparently act as biostimulants and promoters of stress tolerance. The final result is sulfate S+6, which is the source of sulfur that all soil organisms assimilate and that plants absorb by their root cells. The changes in the oxidation states of sulfur S0 to S+6 depend on the action of specific groups of edaphic bacteria. In plant cells, S+6 sulfate is reduced to S−2 and incorporated into biological molecules. S−2 is also absorbed by stomata from H2S, COS, and other atmospheric sources. S−2 is the precursor of inorganic polysulfides, organic polysulfanes, and H2S, the action of which has been described in cell signaling and biostimulation in plants. S−2 is also the basis of essential biological molecules in signaling, metabolism, and stress tolerance, such as reactive sulfur species (RSS), SAM, glutathione, and phytochelatins. The present review describes the dynamics of sulfur in soil and plants, considering elemental sulfur as the starting point, and, as a final point, the sulfur accumulated as S−2 in biological structures. The factors that modify the behavior of the different components of the sulfur cycle in the soil–plant–atmosphere system, and how these influences the productivity, quality, and stress tolerance of crops, are described. The internal and external factors that influence the cellular production of S−2 and polysulfides vs. other S species are also described. The impact of elemental sulfur is compared with that of sulfates, in the context of proper soil management. The conclusion is that the use of elemental sulfur is recommended over that of sulfates, since it is beneficial for the soil microbiome, for productivity and nutritional quality of crops, and also allows the increased tolerance of plants to environmental stresses. Full article
(This article belongs to the Special Issue Signaling Molecules: Hydrogen Sulfide and Polysulfide)
Show Figures

Figure 1

Open AccessFeature PaperReview
Inorganic Polysulfides and Related Reactive Sulfur–Selenium Species from the Perspective of Chemistry
Molecules 2019, 24(7), 1359; https://doi.org/10.3390/molecules24071359 - 06 Apr 2019
Cited by 13
Abstract
Polysulfides (H2Sx) represent a class of reactive sulfur species (RSS) which includes molecules such as H2S2, H2S3, H2S4, and H2S5, and whose presence and [...] Read more.
Polysulfides (H2Sx) represent a class of reactive sulfur species (RSS) which includes molecules such as H2S2, H2S3, H2S4, and H2S5, and whose presence and impact in biological systems, when compared to other sulfur compounds, has only recently attracted the wider attention of researchers. Studies in this field have revealed a facet-rich chemistry and biological activity associated with such chemically simple, still unusual inorganic molecules. Despite their chemical simplicity, these inorganic species, as reductants and oxidants, metal binders, surfactant-like “cork screws” for membranes, components of perthiol signalling and reservoirs for inorganic hydrogen sulfide (H2S), are at the centre of complicated formation and transformation pathways which affect numerous cellular processes. Starting from their chemistry, the hidden presence and various roles of polysulfides in biology may become more apparent, despite their lack of clear analytical fingerprints and often murky biochemical footprints. Indeed, the biological chemistry of H2Sx follows many unexplored paths and today, the relationship between H2S and its oxidized H2Sx species needs to be clarified as a matter of “unmistaken identity”. Simultaneously, emerging species, such as HSSeSH and SenS8−n, also need to be considered in earnest. Full article
(This article belongs to the Special Issue Signaling Molecules: Hydrogen Sulfide and Polysulfide)
Show Figures

Figure 1

Back to TopTop