molecules-logo

Journal Browser

Journal Browser

Plant Natural Products: Isolation, Identification and Biological Activity

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (30 November 2020) | Viewed by 73799

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
Interests: food chemistry; natural products; plant extracts; antioxidants; polyphenols; liquid chromatography; nuclear magnetic resonance; mass spectrometry; organic synthesis; sensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plants produce a large number of secondary metabolites which are the expression of a single species, and although the role of these substances has not always been clarified, it is certainly a precise one in the survival of the species. In recent decades, the number of new substances isolated from the plant kingdom has been constantly growing thanks to the availability of new extraction methods, new separation techniques, and more sophisticated analyses that have made it possible to assign the correct structure to the new isolated molecules even when they are isolated in very poor amounts. Great attention is also given to the study of the enzymatic processes involved in the biosynthesis of these secondary metabolites and in the evaluation of biological activity. Furthermore, these metabolites continue to be the basis for the development of drugs with different fields of application in modern medicine. Many drugs in use are represented by natural compounds, but as many are represented by chemically modified natural compounds, showing that plants represent an inexhaustible source of inspiration for the pharmaceutical industry.

This Special Issue is focused on original research articles that cover the isolation, identification, and evaluation of the biological activity of secondary metabolites present in plants. Researchers working on natural products are encouraged to publish research articles in the reported fields, but studies regarding the development of new methodologies of isolation and purification of secondary metabolites as well as the study of the biosynthetic processes are also welcome.

Reviews collecting the literature of recent decades on specific classes of compounds, on natural products as sources of new drugs, on new methodologies, and on biosynthetic processes are also considered.

Dr. Cristina Forzato
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 1075 KiB  
Article
Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity
by María del Carmen Cortés-Chitala, Héctor Flores-Martínez, Ignacio Orozco-Ávila, Carolina León-Campos, Ángela Suárez-Jacobo, Mirna Estarrón-Espinosa and Irma López-Muraira
Molecules 2021, 26(3), 702; https://doi.org/10.3390/molecules26030702 - 29 Jan 2021
Cited by 23 | Viewed by 2785
Abstract
Plants have been used for thousands of years for various purposes because they have a wide variety of activities with biological significance. Mexican oregano is an aromatic plant of great importance to Mexico and north of Jalisco state as a spice with important [...] Read more.
Plants have been used for thousands of years for various purposes because they have a wide variety of activities with biological significance. Mexican oregano is an aromatic plant of great importance to Mexico and north of Jalisco state as a spice with important economic value. Chromatographic identification and quantification of phenolic compounds and evaluation of their antioxidant activity were important tools to obtain a better characterization of this spice. Phytochemical analysis indicated the presence of flavonoids, triterpenes, saponins, quinones and tannins, the latter at high concentrations. Through chromatographic assays of Mexican oregano extracts, 62 compounds were identified, the major ones being quantified as: taxifolin, apigenin 7-O-glucoside, phlorizin, eriodictyol, quercetin, naringenin, hispidulin, pinocembrin, galangin and genkwanin (compound for the first time reported for this species). The results can be useful as a precedent to establish the bases of new quality characterization parameters and they have also suggested that Mexican oregano contains a wide variety of compounds with untapped importance for the development of new high value-added products. Full article
Show Figures

Figure 1

17 pages, 4253 KiB  
Article
Improved Antioxidant Capacity of Black Tea Waste Utilizing PlantCrystals
by Abraham M. Abraham, Reem M. Alnemari, Jana Brüßler and Cornelia M. Keck
Molecules 2021, 26(3), 592; https://doi.org/10.3390/molecules26030592 - 23 Jan 2021
Cited by 14 | Viewed by 3145
Abstract
Antioxidants are recommended to prevent and treat oxidative stress diseases. Plants are a balanced source of natural antioxidants, but the poor solubility of plant active molecules in aqueous media can be a problem for the formulation of pharmaceutical products. The potential of PlantCrystal [...] Read more.
Antioxidants are recommended to prevent and treat oxidative stress diseases. Plants are a balanced source of natural antioxidants, but the poor solubility of plant active molecules in aqueous media can be a problem for the formulation of pharmaceutical products. The potential of PlantCrystal technology is known to improve the extraction efficacy and antioxidant capacity (AOC) of different plants. However, it is not yet proved for plant waste. Black tea (BT) infusion is consumed worldwide and thus a huge amount of waste occurs as a result. Therefore, BT waste was recycled into PlantCrystals using small-scale bead milling. Their characteristics were compared with the bulk-materials and tea infusion, including particle size and antioxidant capacity (AOC) in-vitro. Waste PlantCrystals possessed a size of about 280 nm. Their AOC increased with decreasing size according to the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) assays. The AOC of the waste increased about nine-fold upon nanonization, leading to a significantly higher AOC than the bulk-waste and showed no significant difference to the infusion and the used standard according to DPPH assay. Based on the results, it is confirmed that the PlantCrystal technology represents a natural, cost-effective plant-waste recycling method and presents an alternative source of antioxidant phenolic compounds. Full article
Show Figures

Graphical abstract

22 pages, 4496 KiB  
Article
Oleocanthal Quantification Using 1H NMR Spectroscopy and Polyphenols HPLC Analysis of Olive Oil from the Bianchera/Belica Cultivar
by Martina Starec, Antonella Calabretti, Federico Berti and Cristina Forzato
Molecules 2021, 26(1), 242; https://doi.org/10.3390/molecules26010242 - 05 Jan 2021
Cited by 13 | Viewed by 3779
Abstract
The cultivar Bianchera is an autochthonous variety from the eastern part of northern Italy, but it is also cultivated in the Slovenian and Croatian peninsula of Istria where it is named Belica (Slovenia) and Bjelica (Croatia). The properties of oleocanthal, a natural anti-inflammatory [...] Read more.
The cultivar Bianchera is an autochthonous variety from the eastern part of northern Italy, but it is also cultivated in the Slovenian and Croatian peninsula of Istria where it is named Belica (Slovenia) and Bjelica (Croatia). The properties of oleocanthal, a natural anti-inflammatory ibuprofen-like compound found in commercial monocultivar extra virgin olive oils, were determined by means of both quantitative 1H NMR (qNMR) and HPLC analyses, where qNMR was identified as a rapid and reliable method for determining the oleocanthal content. The total phenolic content (TPC) was determined by means of the Folin–Ciocalteau method and the major phenols present in the olive oils were also quantified by means of HPLC analyses. All these analyses confirmed that the cultivar Bianchera was very rich in polyphenols and satisfied the health claim provided by the EU Commission Regulation on the polyphenols content of olive oils and their beneficial effects on human health. Full article
Show Figures

Figure 1

17 pages, 4103 KiB  
Article
The Effect of Olive Fruit Fly Bactrocera oleae (Rossi) Infestation on Certain Chemical Parameters of Produced Olive Oils
by Vasilij Valenčič, Bojan Butinar, Maja Podgornik and Milena Bučar-Miklavčič
Molecules 2021, 26(1), 95; https://doi.org/10.3390/molecules26010095 - 28 Dec 2020
Cited by 4 | Viewed by 2501
Abstract
Olives affected by active and damaging infestation (olive fruit fly Bactrocera oleae (Rossi)) were assayed for their chemical composition. Biophenols were determined by HPLC, sterols, triterpenic dialcohols, and fatty acids by gas chromatography analysis. The acquired data were statistically analyzed. Oils produced from [...] Read more.
Olives affected by active and damaging infestation (olive fruit fly Bactrocera oleae (Rossi)) were assayed for their chemical composition. Biophenols were determined by HPLC, sterols, triterpenic dialcohols, and fatty acids by gas chromatography analysis. The acquired data were statistically analyzed. Oils produced from “Istrska belica” fruit affected by active infestation compared to the oils made from fruit affected by damaging infestation showed higher amounts of total oleuropein biofenols (377.3 versus (vs.) 106.6 mg/kg), total biophenols (755 vs. 377 mg/kg), lignans (85.3 vs. 32.9 mg/kg), the dialdehydic form of decarboxymethyl oleuropein aglycone (DMO-Agl-dA) (148.3 vs. 49.0 mg/kg), its oxidized form (DMO-Agl-dA)ox (35.2 vs. 8.5 mg/kg), the dialdehydic form of oleuropein aglycone (O-Agl-dA) (61.1 vs. 8.0 mg/kg), the dialdehydic form of ligstroside aglycone (L-Agl-dA) (63.5 vs. 28.0 mg/kg), the aldehydic form of oleuropein aglycone (O-Agl-A) (40.6 vs. 8.4 mg/kg), and lower amounts of tyrosol (Tyr) (6.0 vs. 13. 9 mg/kg) and the aldehydic form of ligstroside aglycone (L-Agl-A) (13.8 vs. 40.3 mg/kg). Higher values of stigmasterol (2.99%) and lower values of campesterol (2.25%) were determined in oils affected by damaging infestation; an increase in triterpenic dialcohols was also observed (3.04% for damaging and 1.62% for active infestation). Oils affected by damaging infestation, compared to active infestation, showed lower amounts of oleic acid (73.89 vs. 75.15%) and higher amounts of myristic (0.013 vs. 0.011%), linoleic (7.27 vs. 6.48%), and linolenic (0.74 vs. 0.61%) acids. Full article
Show Figures

Figure 1

14 pages, 1312 KiB  
Article
Developing an Olive Biorefinery in Slovenia: Analysis of Phenolic Compounds Found in Olive Mill Pomace and Wastewater
by Ana Miklavčič Višnjevec, Paul Baker, Adam Charlton, Dave Preskett, Kelly Peeters, Črtomir Tavzes, Katja Kramberger and Matthew Schwarzkopf
Molecules 2021, 26(1), 7; https://doi.org/10.3390/molecules26010007 - 22 Dec 2020
Cited by 13 | Viewed by 3174
Abstract
The valorization of olive pomace through the extraction of phenolic compounds at an industrial scale is influenced by several factors that can have a significant impact on the feasibility of this approach. These include the types and levels of phenolic compounds that are [...] Read more.
The valorization of olive pomace through the extraction of phenolic compounds at an industrial scale is influenced by several factors that can have a significant impact on the feasibility of this approach. These include the types and levels of phenolic compounds that are present, the impact that seasonal variation and cultivar type have on the phenolic compound content in both olive pomace and mill effluents and the technological approach used to process the olive crop. Chemical analysis of phenolic compounds was performed using an HPLC-diode-array detector (DAD)-qTOF system, resulting in the identification of 45 compounds in olive mill wastewater and pomace, where secoiridoids comprised 50–60% of the total phenolic content. This study examined three different factors that could impact the phenolic compound content of these processing streams, including cultivar types typically grown on local farms in Slovenia, the type of downstream processing used and seasonality effects. Olive crop varieties sourced from local farms showed high variability, and the highest phenolic content was associated with the local variety “Istrska Belica”. During processing, the phenolic content was on average approximately 50% higher during two-phase decanting compared to three-phase decanting and the type of compound present significantly different. An investigation into the seasonal effects revealed that the phenolic content was 20% higher during the 2019 growing season compared to 2018. A larger sample size over additional growing seasons is required to fully understand the annual variation in phenolic compound content. The methods and results used in this study provide a basis for further analysis of phenolic compounds present in the European Union’s olive crop processing residues and will inform techno-economic modelling for the development of olive biorefineries in Slovenia. Full article
Show Figures

Graphical abstract

12 pages, 3284 KiB  
Article
Therapeutic Potential of Rhododendron arboreum Polysaccharides in an Animal Model of Lipopolysaccharide-Inflicted Oxidative Stress and Systemic Inflammation
by Ajaz Ahmad, Adil Farooq Wali, Muneeb U. Rehman, Andleeb Khan, Mohammad Raish, Mohsin Kazi, Osamah Alnemer and Padma G. M. Rao
Molecules 2020, 25(24), 6045; https://doi.org/10.3390/molecules25246045 - 21 Dec 2020
Cited by 10 | Viewed by 2375
Abstract
Systemic inflammation results in physiological changes, largely mediated by inflammatory cytokines. The present investigation was performed to determine the effect of Rhododendron arboreum (RAP) on inflammatory parameters in the animal model. The RAP (100 and 200 mg/kg) were pre-treated for animals, given orally [...] Read more.
Systemic inflammation results in physiological changes, largely mediated by inflammatory cytokines. The present investigation was performed to determine the effect of Rhododendron arboreum (RAP) on inflammatory parameters in the animal model. The RAP (100 and 200 mg/kg) were pre-treated for animals, given orally for one week, followed by lipopolysaccharide (LPS) injection. Body temperature, burrowing, and open field behavioral changes were assessed. Biochemical parameters (AST, ALT, LDH, BIL, CK, Cr, BUN, and albumin) were done in the plasma after 6 h of LPS challenge. Oxidative stress markers SOD, CAT, and MDA were measured in different organs. Levels of inflammatory markers like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and, interleukin-6 (IL-6) as well as VEGF, a specific sepsis marker in plasma, were quantified. The plasma enzymes, antioxidant markers and plasma pro-inflammatory cytokines were significantly restored (p < 0.5) by RAP treatment, thus preventing the multi-organ and tissue damage in LPS induced rats. The protective effect of RAP may be due to its potent antioxidant potential. Thus, RAP can prevent LPS induced oxidative stress, as well as inflammatory and multi-organ damage as reported in histopathological studies in rats when administered to the LPS treated animals. These findings indicate that RAP can benefit in the management of systemic inflammation from LPS and may have implications for a new treatment or preventive therapeutic strategies with an inflammatory component. Full article
Show Figures

Figure 1

9 pages, 260 KiB  
Article
Isoflavonoid Profiling and Estrogen-Like Activity of Four Genista Species from the Greek Flora
by Antigoni Cheilari, Argyro Vontzalidou, Maria Makropoulou, Aggeliki K. Meligova, Nikolas Fokialakis, Sofia Mitakou, Michael N. Alexis and Nektarios Aligiannis
Molecules 2020, 25(23), 5507; https://doi.org/10.3390/molecules25235507 - 24 Nov 2020
Cited by 1 | Viewed by 1605
Abstract
As part of our ongoing research on phytoestrogens, we investigated the phytochemical profile and estrogen-like activities of eight extracts from the aerial parts of four Genista species of Greek flora using estrogen-responsive cell lines. Ethyl acetate and methanolic extracts of G. acanthoclada, [...] Read more.
As part of our ongoing research on phytoestrogens, we investigated the phytochemical profile and estrogen-like activities of eight extracts from the aerial parts of four Genista species of Greek flora using estrogen-responsive cell lines. Ethyl acetate and methanolic extracts of G. acanthoclada, G. depressa,G. hassertiana, and G. millii were obtained with accelerated solvent extraction and their phytochemical profiles were compared using ultra-high-performance liquid chromatography-high-resolution mass spectrometry (uHPLC-HRMS). Fourteen isoflavonoids, previously isolated from G. halacsyi, were used as reference standards for their identification in the extracts. Thirteen isoflavonoids were detected in both extracts of G. acanthoclada and G. hassertiana, while fewer and far fewer were detected in G. millii and G. depressa, respectively. The ethyl acetate extracts of G. hassertiana and G. acanthoclada displayed 2.45- and 1.79-fold higher, respectively, estrogen-like agonist activity in Ishikawa cells compared to MCF-7 cells at pharmacologically relevant concentrations. Both these extracts, but not that of G. depressa, contained mono- and di-O-β-d-glucosides of genistein as well as the aglycone, all three of which are known to display full estrogen-like activity at lower-than-micromolar concentrations. The possibility of using preparations rich in G. hassertiana and/or G. acanthoclada extracts as a potentially safer substitute for low-dose vaginal estrogen for menopausal symptoms is discussed. Full article
Show Figures

Graphical abstract

16 pages, 46074 KiB  
Article
Development and Optimization of Epigallocatechin-3-Gallate (EGCG) Nano Phytosome Using Design of Experiment (DoE) and Their In Vivo Anti-Inflammatory Studies
by Mohammad H. Shariare, Kazi Afnan, Faria Iqbal, Mohammad A. Altamimi, Syed Rizwan Ahamad, Mohammed S. Aldughaim, Fars K. Alanazi and Mohsin Kazi
Molecules 2020, 25(22), 5453; https://doi.org/10.3390/molecules25225453 - 20 Nov 2020
Cited by 13 | Viewed by 3366
Abstract
Inflammation is responsible for the development of many diseases that make up a significant cause of death. The purpose of the study was to develop a novel nanophytosomal preparation of epigallocatechin-3-gallate (EGCG) and egg phospholipid complex that has a lower particle size with [...] Read more.
Inflammation is responsible for the development of many diseases that make up a significant cause of death. The purpose of the study was to develop a novel nanophytosomal preparation of epigallocatechin-3-gallate (EGCG) and egg phospholipid complex that has a lower particle size with higher drug loading capability, physical stability and anti-inflammatory activities. The impact of different factors and material characteristics on the average particle size was studied along with the drug loading of phytosome using design of experiment (DoE). The in vivo anti-inflammatory study was evaluated using a rat model to investigate the performance of EGCG nanophytosome. UHPLC results showed that 500 µg of EGCG were present in 1 mL of green tea extract. SEM data exhibited that phytosome (phospholipid-drug complex) was in the nanosize range, which was further evident from TEM data. Malvern Zetasizer data showed that the average particle size of the EGCG nanophytosome was in the range of 100–250 nm. High drug loading (up to 90%) was achieved with optimum addition rate, stirring temperature and phospholipid concentration. Stability study data suggest that no significant changes were observed in average particle size and drug loading of nanophytome. The in vivo anti-inflammatory study indicated a significant anti-inflammatory activity of green tea extract, pure EGCG and its phytosomal preparations (p ≤ 0.001) against acute paw edema. Full article
Show Figures

Graphical abstract

16 pages, 2006 KiB  
Article
A Bioactive Olive Pomace Extract Prevents the Death of Murine Cortical Neurons Triggered by NMDAR Over-Activation
by Alice Franchi, Marco Pedrazzi, Alessandro Alberto Casazza, Enrico Millo, Gianluca Damonte, Annalisa Salis, Nara Liessi, Franco Onofri, Antonella Marte, Silvia Casagrande, Roberta De Tullio, Patrizia Perego and Monica Averna
Molecules 2020, 25(19), 4385; https://doi.org/10.3390/molecules25194385 - 24 Sep 2020
Cited by 4 | Viewed by 2214
Abstract
We have recently demonstrated that bioactive molecules, extracted by high pressure and temperature from olive pomace, counteract calcium-induced cell damage to different cell lines. Here, our aim was to study the effect of the same extract on murine cortical neurons, since the preservation [...] Read more.
We have recently demonstrated that bioactive molecules, extracted by high pressure and temperature from olive pomace, counteract calcium-induced cell damage to different cell lines. Here, our aim was to study the effect of the same extract on murine cortical neurons, since the preservation of the intracellular Ca2+-homeostasis is essential for neuronal function and survival. Accordingly, we treated neurons with different stimuli in order to evoke cytotoxic glutamatergic activation. In these conditions, the high-pressure and temperature extract from olive pomace (HPTOPE) only abolished the effects of N-methyl-d-aspartate (NMDA). Particularly, we observed that HPTOPE was able to promote the neuron rescue from NMDA-induced cell death. Moreover, we demonstrated that HPTOPE is endowed with the ability to maintain the intracellular Ca2+-homeostasis following NMDA receptor overactivation, protecting neurons from Ca2+-induced adverse effects, including aberrant calpain proteolytic activity. Moreover, we highlight the importance of the extraction conditions used that, without producing toxic molecules, allow us to obtain protecting molecules belonging to proanthocyanidin derivatives like procyanidin B2. In conclusion, we can hypothesize that HPTOPE, due to its functional and nontoxic properties on neuronal primary culture, can be utilized for future therapeutic interventions for neurodegeneration. Full article
Show Figures

Figure 1

9 pages, 830 KiB  
Article
Constituents of Coreopsis lanceolata Flower and Their Dipeptidyl Peptidase IV Inhibitory Effects
by Bo-Ram Kim, Sunil Babu Paudel, Joo-Won Nam, Chang Hyun Jin, Ik-Soo Lee and Ah-Reum Han
Molecules 2020, 25(19), 4370; https://doi.org/10.3390/molecules25194370 - 23 Sep 2020
Cited by 19 | Viewed by 2534
Abstract
A new polyacetylene glycoside, (5R)-6E-tetradecene-8,10,12-triyne-1-ol-5-O-β-glucoside (1), was isolated from the flower of Coreopsis lanceolata (Compositae), together with two known compounds, bidenoside C (10) and (3S,4S)-5E-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4- [...] Read more.
A new polyacetylene glycoside, (5R)-6E-tetradecene-8,10,12-triyne-1-ol-5-O-β-glucoside (1), was isolated from the flower of Coreopsis lanceolata (Compositae), together with two known compounds, bidenoside C (10) and (3S,4S)-5E-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-glucopyranoside (11), which were found in Coreopsis species for the first time. The other known compounds, lanceoletin (2), 3,2′-dihydroxy-4-3′-dimethoxychalcone-4′-glucoside (3), 4-methoxylanceoletin (4), lanceolin (5), leptosidin (6), (2R)-8-methoxybutin (7), luteolin (8) and quercetin (9), were isolated in this study and reported previously from this plant. The structure of 1 was elucidated by analyzing one-dimensional and two-dimensional nuclear magnetic resonance and high resolution-electrospray ionization-mass spectrometry data. All compounds were tested for their dipeptidyl peptidase IV (DPP-IV) inhibitory activity and compounds 24, 6 and 7 inhibited DPP-IV activity in a concentration-dependent manner, with IC50 values from 9.6 to 64.9 μM. These results suggest that C. lanceolata flower and its active constituents show potential as therapeutic agents for diseases associated with type 2 diabetes mellitus. Full article
Show Figures

Figure 1

17 pages, 2110 KiB  
Article
Antihyperglycemic Effects of Annona diversifolia Safford and Its Acyclic Terpenoids: α-Glucosidase and Selective SGLT1 Inhibitiors
by Miguel Valdés, Fernando Calzada, Jessica Elena Mendieta-Wejebe, Verenice Merlín-Lucas, Claudia Velázquez and Elizabeth Barbosa
Molecules 2020, 25(15), 3361; https://doi.org/10.3390/molecules25153361 - 24 Jul 2020
Cited by 11 | Viewed by 2398
Abstract
Annona diversifolia Safford and two acyclic terpenoids were evaluated to determine their antihyperglycemic activity as potential α-glucosidase and selective SGLT-1 inhibitiors. Ethanolic extract (EEAd), chloroformic (CHCl3Fr), ethyl acetate (EtOAcFr), aqueous residual (AcRFr), secondary 5 (Fr5) fractions, farnesal (1), and [...] Read more.
Annona diversifolia Safford and two acyclic terpenoids were evaluated to determine their antihyperglycemic activity as potential α-glucosidase and selective SGLT-1 inhibitiors. Ethanolic extract (EEAd), chloroformic (CHCl3Fr), ethyl acetate (EtOAcFr), aqueous residual (AcRFr), secondary 5 (Fr5) fractions, farnesal (1), and farnesol (2) were evaluated on normoglycemic and streptozocin-induced diabetic mice. EEAd, CHCl3Fr, Fr5, (1) and (2) showed antihyperglycemic activity. The potential as α-glucosidase inhibitors of products was evaluated with oral sucrose and lactose tolerance (OSTT and OLTT, respectively) and intestinal sucrose hydrolysis (ISH) tests; the potential as SGLT-1 inhibitors was evaluated using oral glucose tolerance (OGTT), intestinal glucose absorption (IGA), and urinary glucose excretion (UGE) tests. In OSTT and OLTT, all treatments showed significant activity at two and four hours. In ISH, half maximal effective concentrations (CE50) of 565, 662 and 590 μg/mL, 682 and 802 μM were calculated, respectively. In OGTT, all treatments showed significant activity at two hours. In IGA, CE50 values of 1059, 783 and 539 μg/mL, 1211 and 327 μM were calculated, respectively. In UGE Fr5, (1) and (2) showed significant reduction of the glucose excreted compared with canagliflozin. These results suggest that the antihyperglycemic activity is mediated by α-glucosidase and selective SGLT-1 inhibition. Full article
Show Figures

Graphical abstract

19 pages, 3422 KiB  
Article
The (+)-Brevipolide H Displays Anticancer Activity against Human Castration-Resistant Prostate Cancer: The Role of Oxidative Stress and Akt/mTOR/p70S6K-Dependent Pathways in G1 Checkpoint Arrest and Apoptosis
by Yi-Hua Sheng, Wohn-Jenn Leu, Ching-Nung Chen, Jui-Ling Hsu, Ying-Tung Liu, Lih-Ching Hsu, Duen-Ren Hou and Jih-Hwa Guh
Molecules 2020, 25(12), 2929; https://doi.org/10.3390/molecules25122929 - 25 Jun 2020
Cited by 4 | Viewed by 2708
Abstract
Because conventional chemotherapy is not sufficiently effective against prostate cancer, various examinations have been performed to identify anticancer activity of naturally occurring components and their mechanisms of action. The (+)-brevipolide H, an α-pyrone-based natural compound, induced potent and long-term anticancer effects in human [...] Read more.
Because conventional chemotherapy is not sufficiently effective against prostate cancer, various examinations have been performed to identify anticancer activity of naturally occurring components and their mechanisms of action. The (+)-brevipolide H, an α-pyrone-based natural compound, induced potent and long-term anticancer effects in human castration-resistant prostate cancer (CRPC) PC-3 cells. Flow cytofluorometric analysis with propidium iodide staining showed (+)-brevipolide H-induced G1 arrest of cell cycle and subsequent apoptosis through induction of caspase cascades. Since Akt/mTOR pathway has been well substantiated in participating in cell cycle progression in G1 phase, its signaling and downstream regulators were examined. Consequently, (+)-brevipolide H inhibited the signaling pathway of Akt/mTOR/p70S6K. The c-Myc inhibition and downregulation of G1 phase cyclins were also attributed to (+)-brevipolide H action. Overexpression of myristoylated Akt significantly rescued mTOR/p70S6K and downstream signaling under (+)-brevipolide H treatment. ROS and Ca2+, two key mediators in regulating intracellular signaling, were determined, showing that (+)-brevipolide H interactively induced ROS production and an increase of intracellular Ca2+ levels. The (+)-Brevipolide H also induced the downregulation of anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL) and loss of mitochondrial membrane potential, indicating the contribution of mitochondrial dysfunction to apoptosis. In conclusion, the data suggest that (+)-brevipolide H displays anticancer activity through crosstalk between ROS production and intracellular Ca2+ mobilization. In addition, suppression of Akt/mTOR/p70S6K pathway associated with downregulation of G1 phase cyclins contributes to (+)-brevipolide H-mediated anticancer activity, which ultimately causes mitochondrial dysfunction and cell apoptosis. The data also support the biological significance and, possibly, clinically important development of natural product-based anticancer approaches. Full article
Show Figures

Graphical abstract

11 pages, 2207 KiB  
Article
New Methyl Threonolactones and Pyroglutamates of Spilanthes acmella (L.) L. and Their Bone Formation Activities
by Retno Widyowati, Melanny Ika Sulistyowaty, Nguyen Hoang Uyen, Sachiko Sugimoto, Yoshi Yamano, Hideaki Otsuka and Katsuyoshi Matsunami
Molecules 2020, 25(11), 2500; https://doi.org/10.3390/molecules25112500 - 28 May 2020
Cited by 4 | Viewed by 2381
Abstract
In our continuing research for bioactive constituents from natural resources, a new methyl threonolactone glucopyranoside (1), a new methyl threonolactone fructofuranoside (2), 2 new pyroglutamates (3 and 4), and 10 known compounds (514) [...] Read more.
In our continuing research for bioactive constituents from natural resources, a new methyl threonolactone glucopyranoside (1), a new methyl threonolactone fructofuranoside (2), 2 new pyroglutamates (3 and 4), and 10 known compounds (514) were isolated from the whole plant of Spilanthes acmella (L.) L. The structures of these compounds were determined based on various spectroscopic and chemical analyses. All of the isolated compounds were evaluated on bone formation parameters, such as ALP (alkaline phosphatase) and mineralization stimulatory activities of MC3T3-E1 cell lines. The results showed that the new compound, 1,3-butanediol 3-pyroglutamate (4), 2-deoxy-d-ribono-1,4-lactone (6), methyl pyroglutamate (7), ampelopsisionoside (10), icariside B1 (11), and benzyl α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside (12) stimulated both ALP and mineralization activities. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

27 pages, 15057 KiB  
Review
Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases
by Seong Ah Shin, Byeong Jun Joo, Jun Seob Lee, Gyoungah Ryu, Minjoo Han, Woe Yeon Kim, Hyun Ho Park, Jun Hyuck Lee and Chang Sup Lee
Molecules 2020, 25(24), 5932; https://doi.org/10.3390/molecules25245932 - 15 Dec 2020
Cited by 62 | Viewed by 5566
Abstract
Phytochemicals are known to have anti-inflammatory effects in vitro and in vivo, such as in inflammatory disease model systems. Inflammation is an essential immune response to exogenous stimuli such as infection and injury. Although inflammation is a necessary host-defense mechanism, chronic inflammation is [...] Read more.
Phytochemicals are known to have anti-inflammatory effects in vitro and in vivo, such as in inflammatory disease model systems. Inflammation is an essential immune response to exogenous stimuli such as infection and injury. Although inflammation is a necessary host-defense mechanism, chronic inflammation is associated with the continuous local or systemic release of inflammatory mediators, non-cytokine mediators, such as ROS and NO, and inflammatory cytokines are strongly implicated in the pathogenesis of various inflammatory disorders. Phytochemicals that exhibit anti-inflammatory mechanisms that reduce sustained inflammation could be therapeutic candidates for various inflammatory diseases. These phytochemicals act by modulating several main inflammatory signaling pathways, including NF-κB, MAPKs, STAT, and Nrf-2 signaling. Here, we discuss the characteristics of phytochemicals that possess anti-inflammatory activities in various chronic inflammatory diseases and review the molecular signaling pathways altered by these anti-inflammatory phytochemicals, with a focus on transcription factor pathways. Furthermore, to evaluate the phytochemicals as drug candidates, we translate the effective doses of phytochemicals in mice or rat disease models into the human-relevant equivalent and compare the human-relevant equivalent doses of several phytochemicals with current anti-inflammatory drugs doses used in different types of chronic inflammatory diseases. Full article
Show Figures

Figure 1

18 pages, 693 KiB  
Review
Modern Trends in the In Vitro Production and Use of Callus, Suspension Cells and Root Cultures of Medicinal Plants
by Olga Babich, Stanislav Sukhikh, Artem Pungin, Svetlana Ivanova, Lyudmila Asyakina and Alexander Prosekov
Molecules 2020, 25(24), 5805; https://doi.org/10.3390/molecules25245805 - 09 Dec 2020
Cited by 30 | Viewed by 4502 | Correction
Abstract
This paper studies modern methods of producing and using callus, suspension cells and root cultures of medicinal plants in vitro. A new solution for natural product production is the use of an alternative source of renewable, environmentally friendly raw materials: callus, suspension and [...] Read more.
This paper studies modern methods of producing and using callus, suspension cells and root cultures of medicinal plants in vitro. A new solution for natural product production is the use of an alternative source of renewable, environmentally friendly raw materials: callus, suspension and root cultures of higher plants in vitro. The possibility of using hairy root cultures as producers of various biologically active substances is studied. It is proven that the application of the genetic engineering achievements that combine in vitro tissue culture and molecular biology methods was groundbreaking in terms of the intensification of the extraction process of compounds significant for the medical industry. It is established that of all the callus processing methods, suspension and root cultures in vitro, the Agrobacterium method is the most widely used in practice. The use of agrobacteria has advantages over the biolistic method since it increases the proportion of stable transformation events, can deliver large DNA segments and does not require special ballistic devices. As a result of the research, the most effective strains of agrobacteria are identified. Full article
Show Figures

Figure 1

15 pages, 688 KiB  
Review
Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity
by Sonia Caruntu, Alina Ciceu, Neli Kinga Olah, Ioan Don, Anca Hermenean and Coralia Cotoraci
Molecules 2020, 25(22), 5416; https://doi.org/10.3390/molecules25225416 - 19 Nov 2020
Cited by 27 | Viewed by 7193
Abstract
Thuja occidentalis L. (Cupressaceae) has its origins in Eastern North America and is cultivated in Europe and Brazil as an ornamental tree, being known as the “tree of life” or “white cedar”. In traditional medicine, it is commonly used to treat liver diseases, [...] Read more.
Thuja occidentalis L. (Cupressaceae) has its origins in Eastern North America and is cultivated in Europe and Brazil as an ornamental tree, being known as the “tree of life” or “white cedar”. In traditional medicine, it is commonly used to treat liver diseases, bullous bronchitis, psoriasis, enuresis, amenorrhea, cystitis, uterine carcinomas, diarrhea, and rheumatism. The chemical constituents of T. occidentalis have been of research interest for decades, due to their contents of essential oil, coumarins, flavonoids, tannins, and proanthocyanidines. Pharmacology includes antioxidant, anti-inflammatory, antibacterial, antifungal, anticancer, antiviral, protective activity of the gastrointestinal tract, radioprotection, antipyretic, and lipid metabolism regulatory activity. Therefore, the present review represents the synthesis of all the relevant information for T. occidentalis, its ethnobotany, phytochemistry, and a thorough analysis of their pharmacological activities, in order to promote all the biological activities shown so far, rather than the antitumor activity that has promoted it as a medicinal species. Full article
Show Figures

Figure 1

32 pages, 4019 KiB  
Review
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities
by V. P. Thinh Nguyen, Jon Stewart, Michel Lopez, Irina Ioannou and Florent Allais
Molecules 2020, 25(19), 4537; https://doi.org/10.3390/molecules25194537 - 03 Oct 2020
Cited by 63 | Viewed by 8690
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived [...] Read more.
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites. Full article
Show Figures

Figure 1

37 pages, 3295 KiB  
Review
A Review of the Ephedra genus: Distribution, Ecology, Ethnobotany, Phytochemistry and Pharmacological Properties
by Daphne E. González-Juárez, Abraham Escobedo-Moratilla, Joel Flores, Sergio Hidalgo-Figueroa, Natalia Martínez-Tagüeña, Jesús Morales-Jiménez, Alethia Muñiz-Ramírez, Guillermo Pastor-Palacios, Sandra Pérez-Miranda, Alfredo Ramírez-Hernández, Joyce Trujillo and Elihú Bautista
Molecules 2020, 25(14), 3283; https://doi.org/10.3390/molecules25143283 - 20 Jul 2020
Cited by 60 | Viewed by 11653
Abstract
Ephedra is one of the largest genera of the Ephedraceae family, which is distributed in arid and semiarid regions of the world. In the traditional medicine from several countries some species from the genus are commonly used to treat asthma, cold, flu, chills, [...] Read more.
Ephedra is one of the largest genera of the Ephedraceae family, which is distributed in arid and semiarid regions of the world. In the traditional medicine from several countries some species from the genus are commonly used to treat asthma, cold, flu, chills, fever, headache, nasal congestion, and cough. The chemical constituents of Ephedra species have been of research interest for decades due to their contents of ephedrine-type alkaloids and its pharmacological properties. Other chemical constituents such as phenolic and amino acid derivatives also have resulted attractive and have provided evidence-based supporting of the ethnomedical uses of the Ephedra species. In recent years, research has been expanded to explore the endophytic fungal diversity associated to Ephedra species, as well as, the chemical constituents derived from these fungi and their pharmacological bioprospecting. Two additional aspects that illustrate the chemical diversity of Ephedra genus are the chemotaxonomy approaches and the use of ephedrine-type alkaloids as building blocks in organic synthesis. American Ephedra species, especially those that exist in Mexico, are considered to lack ephedrine type alkaloids. In this sense, the phytochemical study of Mexican Ephedra species is a promising area of research to corroborate their ephedrine-type alkaloids content and, in turn, discover new chemical compounds with potential biological activity. Therefore, the present review represents a key compilation of all the relevant information for the Ephedra genus, in particular the American species, the species distribution, their ecological interactions, its ethnobotany, its phytochemistry and their pharmacological activities and toxicities, in order to promote clear directions for future research. Full article
Show Figures

Graphical abstract

Back to TopTop