molecules-logo

Journal Browser

Journal Browser

Isolation, Identification and Application of Biologically Active Natural Products—Second Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 21881

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
Interests: medicinal and edible plants; natural product bioactivity; phytochemistry; structural characterization; biological activity evaluation; toxicological evaluation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
Interests: plant-based foods; functional foods; medicinal and edible plants; natural product bioactivity; phytochemistry; structural characterization; biological activity evaluation; toxicological evaluation

Special Issue Information

Dear Colleagues,

It is well known that natural products are small molecules produced naturally by any organism including primary and secondary metabolites. They are usually presented in the edible and medicinal plants, animals and microorganism. Traditionally, ethnopharmacology and phytomedicine have been proved to be an invaluable source of information on the probable medicinal properties of these natural resources. To date, the numerous phytochemical and pharmacological studies have been conducted to found significant biological ingredients. And some of these bioactive compounds were developed into clinical drugs. In many cases, current studies conducted in various pharmacological models (in vitro, in vivo, clinical trials) played important roles in biological evaluation of natural products being used as potential medicinal agents.

This Special Issue of Molecules cover the aspects concerning extraction, isolation and structure elucidation of natural products, structure-bioactivity relationship of natural products, novel analytical methods including in natural products, bioaccessibility and bioavailability of natural products, biological evaluation of bioactive natural products; safety and efficacy phytotherapy of natural products. I hope that this Special Issue will increase the understanding of bioactive natural products and I would like to thank the authors for their valuable contributions.

Prof. Dr. Gui-Guang Cheng
Dr. Ya-Ping Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytochemistry
  • natural product chemistry
  • food chemistry
  • secondary metabolites
  • isolation and structure elucidation of bioactive compounds
  • novel analytical technique in natural products
  • phytomedicine
  • biological and pharmacological activity
  • toxicological evaluation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 3914 KiB  
Article
Effect of Ultra-High Pressure on the Extraction of the Free, Esterified, and Bound Phenolics from Dendrobium fimbriatum Hook: Chemical Constituents and Antioxidant Ability
by Qinge Su, Junbo Hu, Huimin Cui, Fangyuan Zheng, Yaping Liu, Zhengxuan Wang and Guiguang Cheng
Molecules 2025, 30(8), 1836; https://doi.org/10.3390/molecules30081836 - 19 Apr 2025
Viewed by 196
Abstract
This study explores the antioxidant activity and antioxidant mechanism of phenolic compounds (including free (FP), esterified (EP), and bound phenolic (BP)) from Dendrobium fimbriatum Hook (DFH) stems, before and after ultra-high pressure (UHP) treatment. A total of 374 compounds were identified, with 149 [...] Read more.
This study explores the antioxidant activity and antioxidant mechanism of phenolic compounds (including free (FP), esterified (EP), and bound phenolic (BP)) from Dendrobium fimbriatum Hook (DFH) stems, before and after ultra-high pressure (UHP) treatment. A total of 374 compounds were identified, with 149 showing significant differences in DFH phenolic extracts before and after UHP treatment. UHP treatment significantly increased the total phenolic content (TPC) and total flavonoid content (TFC) and enhanced antioxidant activity in vitro. Particularly, the UEP-DFH, IC50 values in ABTS and DPPH were reduced by 49.6% and 64.1%, respectively. In H2O2-treated HepG2 cells, the extracts demonstrated significant cytoprotective effects, including increased cell viability, ROS reduction, and enhanced GSH levels by 17.8% (UFP-DFH) and 12.5% (UEP-DFH). The activities of GS, GCL, GR, GSH-Px, SOD, CAT, NQO1, and HO-1 were also elevated in UHP-treated extracts. DAPI staining indicated that the extracts promoted nuclear Nrf2 expression, particularly UFP-DFH and UEP-DFH. Molecular docking indicated that vanillic acid could competitively bind to the Keap1-Kelch domain, facilitating activation of the antioxidant pathway. Overall, UHP treatment enhanced both extraction efficiency and antioxidant activity, making it a promising method for improving the bioactivity of DFH in the food and functional food industries. Full article
Show Figures

Figure 1

18 pages, 3700 KiB  
Article
The Anti-Inflammatory Effects of Formononetin, an Active Constituent of Pueraria montana Var. Lobata, via Modulation of Macrophage Autophagy and Polarization
by Linyi Xu, Shuo Zhou, Jing Li, Wenbo Yu, Wenyi Gao, Haoming Luo and Xiaoxue Fang
Molecules 2025, 30(1), 196; https://doi.org/10.3390/molecules30010196 - 6 Jan 2025
Cited by 1 | Viewed by 1069
Abstract
Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (P. lobata) is a medicinal herb widely used in the food and pharmaceutical industries, and studies have shown that P. lobata possesses significant anti-inflammatory pharmacological activities. In this paper, [...] Read more.
Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (P. lobata) is a medicinal herb widely used in the food and pharmaceutical industries, and studies have shown that P. lobata possesses significant anti-inflammatory pharmacological activities. In this paper, a total of 16 compounds were isolated and identified from P. lobata, among which compounds 13, 7, 14, and 16 were isolated from P. lobata for the first time. The results of an in vitro anti-inflammatory activity screening assay showed that compounds 1, 4, 6, 8, and 15 were able to significantly reduce the levels of pro-inflammatory cytokines IL-6 and IL-1β in LPS-induced RAW264.7 macrophages, with the most obvious effect produced by compound 6 (formononetin), while formononetin was able to significantly reduce the number of macrophages at the site of inflammation in transgenic zebrafish. In addition, network pharmacological analysis revealed that the anti-inflammatory activity of formononetin is closely related to autophagy and polarization targets such as TNF, EGFR, PTGS2, and ESR1. In vitro validation experiments showed that formononetin could enhance the expression of LCII/LCI and reduce the expression of P62 protein, reduce the expression of CD86, and enhance the expression of CD206, which further indicated that formononetin could reduce inflammation by regulating macrophage autophagy and polarization processes. Full article
Show Figures

Figure 1

10 pages, 1491 KiB  
Article
Three New Ent-Kaurane Diterpenes with Antibacterial Activity from Sigesbeckia orientalis
by Zhong-Shun Zhou, Zhao-Jie Wang, Bei Tian, Yan-Yan Zhu, Mei-Zhen Wei, Yun-Li Zhao and Xiao-Dong Luo
Molecules 2024, 29(19), 4631; https://doi.org/10.3390/molecules29194631 - 29 Sep 2024
Cited by 1 | Viewed by 1250
Abstract
Three novel ent-kaurane diterpenes, namely sigesbeckin A–C (13), in conjunction with eight previously identified analogues (411), were isolated from Sigesbeckia orientalis. Their chemical structures were resolved through multiple spectroscopic analyses. All compounds were [...] Read more.
Three novel ent-kaurane diterpenes, namely sigesbeckin A–C (13), in conjunction with eight previously identified analogues (411), were isolated from Sigesbeckia orientalis. Their chemical structures were resolved through multiple spectroscopic analyses. All compounds were assessed for antimicrobial bioactivity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains. In particular, compounds 1 and 5 demonstrated moderate efficacy, with MIC values of 64 μg/mL. Moreover, compounds 3, 5, and 11 were found to synergize with doxorubicin hydrochloride (DOX) and vancomycin (VAN) against MRSA and VRE. The aforementioned findings offer valuable insights for the development of novel alternatives to antibiotics, which can effectively tackle the escalating issue of antibiotic resistance. Full article
Show Figures

Graphical abstract

14 pages, 7781 KiB  
Article
Fast Screening of Tyrosinase Inhibitors in Coreopsis tinctoria Nutt. by Ligand Fishing Based on Paper-Immobilized Tyrosinase
by Ayzohra Ablat, Ming-Jie Li, Xiao-Rui Zhai, Yuan Wang, Xiao-Lin Bai, Peng Shu and Xun Liao
Molecules 2024, 29(17), 4018; https://doi.org/10.3390/molecules29174018 - 25 Aug 2024
Cited by 1 | Viewed by 1440
Abstract
Coreopsis tinctoria Nutt. is an important medicinal plant in traditional Uyghur medicine. The skin-lightening potential of the flower has been recognized recently; however, the active compounds responsible for that are not clear. In this work, tyrosinase, a target protein for regulating melanin synthesis, [...] Read more.
Coreopsis tinctoria Nutt. is an important medicinal plant in traditional Uyghur medicine. The skin-lightening potential of the flower has been recognized recently; however, the active compounds responsible for that are not clear. In this work, tyrosinase, a target protein for regulating melanin synthesis, was immobilized on the Whatman paper for the first time to screen skin-lightening compounds present in the flower. Quercetagetin-7-O-glucoside (1), marein (2), and okanin (3) were found to be the enzyme inhibitors. The IC50 values of quercetagetin-7-O-glucoside (1) and okanin (3) were 79.06 ± 1.08 μM and 30.25 ± 1.11 μM, respectively, which is smaller than 100.21 ± 0.11 μM of the positive control kojic acid. Enzyme kinetic analysis and molecular docking were carried out to investigate their inhibition mechanism. Although marein (2) showed a weak inhibition effect in vitro, it inhibited the intracellular tyrosinase activity and diminished melanin production in melanoma B16 cells as did the other two inhibitors. The paper-based ligand fishing method developed in this work makes it effective to quickly screen tyrosinase inhibitors from natural products. This is the first report on the tyrosinase inhibitory effect of those three compounds, showing the promising potential of Coreopsis tinctoria for the development of herbal skin-lightening products. Full article
Show Figures

Figure 1

15 pages, 1286 KiB  
Article
Cultivated Winter-Type Lunaria annua L. Seed: Deciphering the Glucosinolate Profile Integrating HPLC, LC-MS and GC-MS Analyses, and Determination of Fatty Acid Composition
by Gina Rosalinda De Nicola, Sabine Montaut, Kayla Leclair, Joëlle Garrioux, Xavier Guillot and Patrick Rollin
Molecules 2024, 29(16), 3803; https://doi.org/10.3390/molecules29163803 - 10 Aug 2024
Viewed by 1694
Abstract
Lunaria annua L. (Brassicaceae) is an ornamental plant newly identified in Europe as a promising industrial oilseed crop for its valuable very-long-chain monounsaturated fatty acids (MUFAs), especially erucic acid (EA) and nervonic acid (NA). L. annua seeds were obtained from annual winter-type plants [...] Read more.
Lunaria annua L. (Brassicaceae) is an ornamental plant newly identified in Europe as a promising industrial oilseed crop for its valuable very-long-chain monounsaturated fatty acids (MUFAs), especially erucic acid (EA) and nervonic acid (NA). L. annua seeds were obtained from annual winter-type plants selected and cultivated in Northern France. Using a systematic multiple-method approach, we set out to determine the profile and content of glucosinolates (GSLs), which are the relevant chemical tag of Brassicaceae. Intact GSLs were analyzed through a well-established LC-MS method. Identification and quantification were performed by HPLC-PDA of desulfo-GSLs (dGLs) according to the official EU ISO method. Moreover, GSL structures were confirmed by GC-MS analysis of the related isothiocyanates (ITCs). Seven GSLs were identified, directly or indirectly, as follows: 1-methylethyl GSL, (1S)-1-methylpropyl GSL, (Rs)-5-(methylsulfinyl)pentyl GSL, (Rs)-6-(methylsulfinyl)hexyl GSL, (2S)-2-hydroxy-4-pentenyl GSL, 2-phenylethyl GSL, and 1-methoxyindol-3-ylmethyl GSL. In other respects, the FA composition of the seed oil was determined. Results revealed cultivated L. annua seed to be a source of NA-rich oil, and presscake as a valuable coproduct. This presscake is indeed rich in GSLs (4.3% w/w), precursors of promising bioactive molecules for agricultural and nutraceutical applications. Full article
Show Figures

Graphical abstract

13 pages, 3585 KiB  
Article
Anti-Inflammatory Effect of Xanthones from Hypericum beanii on Macrophage RAW 264.7 Cells through Reduced NO Production and TNF-α, IL-1β, IL-6, and COX-2 Expression
by Wei Ma, Fu-Cai Ren, Xue-Ru Wang and Ning Li
Molecules 2024, 29(15), 3705; https://doi.org/10.3390/molecules29153705 - 5 Aug 2024
Cited by 1 | Viewed by 1575
Abstract
Hypericum beanii N. Robson, a perennial upright herb, predominantly inhabits temperate regions. This species has been utilized for the treatment of various inflammation-related diseases. One new xanthone 3,7-dihydroxy-1,6-dimethoxyxanthone (1) and twenty-three known xanthones (224) were isolated from [...] Read more.
Hypericum beanii N. Robson, a perennial upright herb, predominantly inhabits temperate regions. This species has been utilized for the treatment of various inflammation-related diseases. One new xanthone 3,7-dihydroxy-1,6-dimethoxyxanthone (1) and twenty-three known xanthones (224) were isolated from the aerial parts of H. beanii. The structure of the new compound was determined based on high-resolution electrospray ionization mass spectroscopy (HR-ESIMS), nuclear magnetic resonance (NMR), Infrared Spectroscopy (IR), ultraviolet spectrophotometry (UV) spectroscopic data. The anti-inflammatory effects of all the isolates were assessed by measuring the inhibitory effect on nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages. Compounds 3,4-dihydroxy-2-methoxyxanthone (15), 1,3,5,6-tetrahydroxyxanthone (19), and 1,3,6,7-tetrahydroxyxanthone (22) exhibited significant anti-inflammatory effects at a concentration of 10 μM with higher potency compared to the positive control quercetin. Furthermore, compounds 15, 19, and 22 reduced inducible NO synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and cyclooxygenase 2 (COX-2) mRNA expression in the LPS-stimulated RAW 264.7 macrophages, suggesting that these compounds may mitigate the synthesis of the aforementioned molecules at the transcriptional level, provisionally confirming their anti-inflammatory efficacy. Full article
Show Figures

Figure 1

17 pages, 3221 KiB  
Article
Periostracum Cicadae Extract and N-Acetyldopamine Regulate the Sleep-Related Neurotransmitters in PCPA-Induced Insomnia Rats
by Dongge Wang, Tingjuan Wu, Jinghui Jin, Yanpo Si, Yushi Wang, Xiaojia Ding, Tao Guo and Wenjun Wei
Molecules 2024, 29(15), 3638; https://doi.org/10.3390/molecules29153638 - 31 Jul 2024
Cited by 4 | Viewed by 1857
Abstract
Insomnia is the second most prevalent mental illness worldwide. Periostracum cicadae (PC), as an animal traditional Chinese medicine with rich pharmacological effects, has been documented as a treatment for children’s night cries, and later extended to treat insomnia. This study aimed to investigate [...] Read more.
Insomnia is the second most prevalent mental illness worldwide. Periostracum cicadae (PC), as an animal traditional Chinese medicine with rich pharmacological effects, has been documented as a treatment for children’s night cries, and later extended to treat insomnia. This study aimed to investigate the effects of PC extract and N-acetyldopamine compounds in ameliorating insomnia. The UPLC-ESI-QTOF-MS analysis determined that PC extract mainly contained N-acetyldopamine components. Previously, we also isolated some acetyldopamine polymers from PC extract, among which acetyldopamine dimer A (NADA) was present in high content. Molecular docking and molecular dynamic simulations demonstrated that NADA could form stable complexes with 5-HT1A, BDNF, and D2R proteins, respectively. The effects of PC extract and NADA on insomnia were evaluated in the PCPA-induced insomnia model. The results indicated that PC extract and NADA could effectively ameliorate hypothalamic pathology of insomnia rats, increase the levels of 5-HT, GABA, and BDNF, and decrease the levels of DA, DOPAC, and HVA. Meanwhile, the PC extract and NADA also could significantly affect the expression of 5-HT1A, BDNF, and DARPP-32 proteins. This study proved that PC extract and acetyldopamine dimer A could effectively improve PCPA-induced insomnia in rats. It is speculated that the main pharmacological substances of PC were acetyldopamine components. Full article
Show Figures

Figure 1

19 pages, 4305 KiB  
Article
Effects of Ultra-High-Pressure Treatment on Chemical Composition and Biological Activities of Free, Esterified and Bound Phenolics from Phyllanthus emblica L. Fruits
by Taiming Chen, Shuyue He, Jing Zhang, Huangxin Wang, Yiqing Jia, Yaping Liu, Mingjun Xie and Guiguang Cheng
Molecules 2024, 29(13), 3181; https://doi.org/10.3390/molecules29133181 - 3 Jul 2024
Cited by 3 | Viewed by 1498
Abstract
Phyllanthus emblica L. fruits (PEFs) were processed by ultra-pressure (UHP) treatment and then extracted by the ultrasonic-assisted extraction method. The influence of UHP on the phenolic composition, enzyme inhibitory activity and antioxidant activity of the free, esterified, and bound phenolic fractions from PEFs [...] Read more.
Phyllanthus emblica L. fruits (PEFs) were processed by ultra-pressure (UHP) treatment and then extracted by the ultrasonic-assisted extraction method. The influence of UHP on the phenolic composition, enzyme inhibitory activity and antioxidant activity of the free, esterified, and bound phenolic fractions from PEFs were compared. UHP pretreatment of PEFs significantly increased the total phenolic and flavonoid contents (p < 0.05). A total of 24 chemical compositions were characterized in normal and UHP-treated PEFs by UHPLC-ESI-HRMS/MS. Compared with normal PEFs, these three different phenolic fractions had stronger antioxidant activities and inhibitory effects on the intracellular reactive oxygen species (ROS) production in H2O2-induced HepG2 cells (p < 0.05). The ROS inhibition might be due to an up-regulation of the expressions of superoxide dismutase (SOD) and glutathione (GSH) activities. In addition, these three different phenolic fractions also significantly inhibited the activities of metabolic enzymes, including α-glucosidase, α-amylase and pancreatic lipase. This work may provide some insights into the potential economics and applications of PEFs in food and nutraceutical industries. Full article
Show Figures

Figure 1

10 pages, 3302 KiB  
Article
A New Quinazolinone Alkaloid along with Known Compounds with Seed-Germination-Promoting Activity from Rhodiola tibetica Endophytic Fungus Penicillium sp. HJT-A-6
by Dongliang Xiao, Yan Wang, Congcong Gao, Xuemei Zhang, Weixing Feng, Xuan Lu and Baomin Feng
Molecules 2024, 29(9), 2112; https://doi.org/10.3390/molecules29092112 - 2 May 2024
Cited by 1 | Viewed by 1604
Abstract
A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7 [...] Read more.
A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7), cyclopenol (8), methyl-indole-3-carboxylate (9), 2,5-dihydroxyphenyl acetate (10), methyl m-hydroxyphenylacetate (11), and conidiogenone B (12), were isolated from the endophytic Penicillium sp. HJT-A-6. The chemical structures of all the compounds were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS. The absolute configuration at C-13 of peniquinazolinone A (1) was established by applying the modified Mosher’s method. Compounds 2, 3, and 7 exhibited an optimal promoting effect on the seed germination of Rhodiola tibetica at a concentration of 0.01 mg/mL, while the optimal concentration for compounds 4 and 9 to promote Rhodiola tibetica seed germination was 0.001 mg/mL. Compound 12 showed optimal seed-germination-promoting activity at a concentration of 0.1 mg/mL. Compared with the positive drug 6-benzyladenine (6-BA), compounds 2, 3, 4, 7, 9, and 12 could extend the seed germination period of Rhodiola tibetica up to the 11th day. Full article
Show Figures

Graphical abstract

20 pages, 10149 KiB  
Article
Protective Effect of Que Zui Tea on d-Galactose-Induced Oxidative Stress Damage in Mice via Regulating SIRT1/Nrf2 Signaling Pathway
by Yongchao Wang, Yongpeng Wang, Tianrui Zhao, Mengcheng Li, Yudan Wang, Jianxin Cao, Yaping Liu, Zhengxuan Wang and Guiguang Cheng
Molecules 2024, 29(6), 1384; https://doi.org/10.3390/molecules29061384 - 20 Mar 2024
Cited by 3 | Viewed by 1874
Abstract
Que Zui tea (QT) is an important herbal tea in the diet of the ‘Yi’ people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the [...] Read more.
Que Zui tea (QT) is an important herbal tea in the diet of the ‘Yi’ people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6′-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1β and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6′-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 3600 KiB  
Review
Extraction and Synthesis of Typical Carotenoids: Lycopene, β-Carotene, and Astaxanthin
by Yuxuan Jiang, Jingyi Ye, Yadong Hu, Jian Zhang, Wenhui Li, Xinghu Zhou, Mingzhou Yu, Yiyang Yu, Jingwei Yang, Wenge Yang, Jinchi Jiang, Jie Cui and Yonghong Hu
Molecules 2024, 29(19), 4549; https://doi.org/10.3390/molecules29194549 - 25 Sep 2024
Cited by 3 | Viewed by 7249
Abstract
Carotenoids are tetraterpene compounds acting as precursors to vitamin A, with functions that include protecting eyesight, enhancing immunity, promoting cell growth and differentiation, and providing antioxidative benefits. Lycopene, β-carotene, and astaxanthin are particularly critical for health and have diverse applications in food, health [...] Read more.
Carotenoids are tetraterpene compounds acting as precursors to vitamin A, with functions that include protecting eyesight, enhancing immunity, promoting cell growth and differentiation, and providing antioxidative benefits. Lycopene, β-carotene, and astaxanthin are particularly critical for health and have diverse applications in food, health products, and medicine. However, natural carotenoids are encased within cell structures, necessitating mechanical methods to disrupt the cell wall for their extraction and purification—a process often influenced by environmental conditions. Thus, improving the efficiency of carotenoid extraction from natural resources is of great interest. This review delves into the research progress made on the extraction processes, structures, and biological functions of carotenoids, focusing on lycopene, β-carotene, and astaxanthin. Traditional extraction methods primarily involve organic solvent-assisted mechanical crushing. With deeper research and technological advancements, more environmentally friendly solvents, advanced machinery, and suitable methods are being employed to enhance the extraction and purification of carotenoids. These improvements have significantly increased extraction efficiency, reduced preparation time, and lowered production costs, laying the groundwork for new carotenoid product developments. Full article
Show Figures

Graphical abstract

Back to TopTop