molecules-logo

Journal Browser

Journal Browser

Exploration of Natural Compounds: Pharmaceutical, Phytochemical and Biological Analysis

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (30 April 2024) | Viewed by 39239

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Chemical substances from nature represent a great source of biologically valuable molecules and they are attracting increasing attention, especially with the incidence of new diseases. They also play an impactful role in drug discovery by unveiling new molecular skeletons and by inspiring the preparation of semisynthetic and hybrid prototypes. This Special Issue within the Natural Products Chemistry Section of Molecules aims to present recent and high-quality findings in the area of natural products. Original papers related to new compounds from plant species, microbial fermentation, microbial and enzymatic biotransformation, and animals with significant biological potential are welcome. This Special Issue also considers results dealing with new pharmacological potential with the mechanisms of action of known natural substances, as well as those addressing the rational design and preparation of semisynthetic derivatives and the synthesis of natural-product-based hybrids with promising therapeutic potential. We would also like to receive results on dereplication studies and the quantification of main components (LCMS data, LCMS- and NMR-based metabolomic data) in new herbal formulations with a particular therapeutic application (antimicrobial, anticancer, anti-inflammatory, enzymatic effects, antihyperglycemic, antiprotozoal, etc.) as well as critical reviews on recent and attractive topics in natural products chemistry (new purification techniques, therapeutic potential, fermentation methods, etc.).

Prof. Dr. Louis Pergaud Sandjo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • structure elucidation
  • natural-product-based hybrids
  • herbal formulations
  • biotransformation
  • biological properties

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 13286 KiB  
Article
Safflower Flavonoid 3′5′Hydroxylase Promotes Methyl Jasmonate-Induced Anthocyanin Accumulation in Transgenic Plants
by Xinyue Zhang, Naveed Ahmad, Qingyu Zhang, Abdul Wakeel Umar, Nan Wang, Xu Zhao, Kang Zhou, Na Yao and Xiuming Liu
Molecules 2023, 28(7), 3205; https://doi.org/10.3390/molecules28073205 - 4 Apr 2023
Cited by 6 | Viewed by 1680
Abstract
Flavonoids are the most abundant class of secondary metabolites that are ubiquitously involved in plant development and resistance to biotic and abiotic stresses. Flavonoid biosynthesis involves multiple channels of orchestrated molecular regulatory factors. Methyl jasmonate (MeJA) has been demonstrated to enhance flavonoid accumulation [...] Read more.
Flavonoids are the most abundant class of secondary metabolites that are ubiquitously involved in plant development and resistance to biotic and abiotic stresses. Flavonoid biosynthesis involves multiple channels of orchestrated molecular regulatory factors. Methyl jasmonate (MeJA) has been demonstrated to enhance flavonoid accumulation in numerous plant species; however, the underlying molecular mechanism of MeJA-induced flavonoid biosynthesis in safflower is still not evident. In the present study, we revealed the underlying molecular basis of a putative F3′5′H gene from safflower imparting MeJA-induced flavonoid accumulation in transgenic plants. The constitutive expression of the CtF3′5′H1 gene was validated at different flowering stages, indicating their diverse transcriptional regulation through flower development in safflower. Similarly, the CtF3′5′H1-overexpressed Arabidopsis plants exhibit a higher expression level, with significantly increased anthocyanins and flavonoid content, but less proanthocyanidins than wild-type plants. In addition, transgenic plants treated with exogenous MeJA revealed the up-regulation of CtF3′5′H1 expression over different time points with significantly enhanced anthocyanin and flavonoid content as confirmed by HPLC analysis. Moreover, CtF3′5′H1- overexpressed Arabidopsis plants under methyl violet and UV-B irradiation also indicated significant increase in the expression level of CtF3′5′H1 with improved anthocyanin and flavonoid content, respectively. Noticeably, the virus-induced gene silencing (VIGS) assay of CtF3′5′H1 in safflower leaves also confirmed reduced anthocyanin accumulation. However, the CtF3′5′H1 suppression in safflower leaves under MeJA elicitation demonstrated significant increase in total flavonoid content. Together, our findings confirmed that CtF3′5′H1 is likely mediating methyl jasmonate-induced flavonoid biosynthesis in transgenic plants via enhanced anthocyanin accumulation. Full article
Show Figures

Figure 1

23 pages, 3959 KiB  
Article
Semisynthetic Sesquiterpene Lactones Generated by the Sensibility of Glaucolide B to Lewis and Brønsted–Lowry Acids and Bases: Cytotoxicity and Anti-Inflammatory Activities
by Layzon A. Lemos da Silva, Louis P. Sandjo, Laura S. Assunção, Anne N. Prigol, Carolina D. de Siqueira, Tânia B. Creczynski-Pasa, Marcus T. Scotti, Luciana Scotti, Fabíola B. Filippin-Monteiro and Maique W. Biavatti
Molecules 2023, 28(3), 1243; https://doi.org/10.3390/molecules28031243 - 27 Jan 2023
Cited by 1 | Viewed by 1561
Abstract
Sesquiterpene lactone (SL) subtypes including hirsutinolide and cadinanolide have a controversial genesis. Metabolites of these classes are either described as natural products or as artifacts produced via the influence of solvents, chromatographic mobile phases, and adsorbents used in phytochemical studies. Based on this [...] Read more.
Sesquiterpene lactone (SL) subtypes including hirsutinolide and cadinanolide have a controversial genesis. Metabolites of these classes are either described as natural products or as artifacts produced via the influence of solvents, chromatographic mobile phases, and adsorbents used in phytochemical studies. Based on this divergence, and to better understand the sensibility of these metabolites, different pH conditions were used to prepare semisynthetic SLs and evaluate the anti-inflammatory and antiproliferative activities. Therefore, glaucolide B (1) was treated with various Brønsted–Lowry and Lewis acids and bases—the same approach was applied to some of its derivatives—allowing us to obtain 14 semisynthetic SL derivatives, 10 of which are hereby reported for the first time. Hirsutinolide derivatives 7a (CC50 = 5.0 µM; SI = 2.5) and 7b (CC50 = 11.2 µM; SI = 2.5) and the germacranolide derivative 8a (CC50 = 3.1 µM; SI = 3.0) revealed significant cytotoxic activity and selectivity against human melanoma SK-MEL-28 cells when compared with that against non-tumoral HUVEC cells. Additionally, compounds 7a and 7c.1 showed strongly reduced interleukin-6 (IL-6) and nitrite (NOx) release in pre-treated M1 macrophages J774A.1 when stimulated with lipopolysaccharide. Despite the fact that hirsutinolide and cadinanolide SLs may be produced via plant metabolism, this study shows that acidic and alkaline extraction and solid-phase purification processes can promote their formation. Full article
Show Figures

Graphical abstract

20 pages, 5502 KiB  
Article
Novel Copper Oxide Bio-Nanocrystals to Target Outer Membrane Lectin of Vancomycin-Resistant Enterococcus faecium (VREfm): In Silico, Bioavailability, Antimicrobial, and Anticancer Potential
by Mahmoud Kandeel, Mohamed Sharaf, Arshad Mahdi Hamad, Ahmad O. Babalghith, Mohnad Abdalla, Muhammad Arif, Reem Binsuwaidan, Nashwah G. M. Attallah, Hossam Aladl Aladl Aladl, Samy Selim and Mariusz Jaremko
Molecules 2022, 27(22), 7957; https://doi.org/10.3390/molecules27227957 - 17 Nov 2022
Cited by 1 | Viewed by 2338
Abstract
In present study, we used Olea europaea leaf extract to biosynthesize in situ Copper Oxide nanocrystals (CuO @OVLe NCs) with powerful antibacterial and anti-cancer capabilities. Physio-chemical analyses, such as UV/Vis, FTIR, XRD, EDX, SEM, and TEM, were applied to characterize CuO [...] Read more.
In present study, we used Olea europaea leaf extract to biosynthesize in situ Copper Oxide nanocrystals (CuO @OVLe NCs) with powerful antibacterial and anti-cancer capabilities. Physio-chemical analyses, such as UV/Vis, FTIR, XRD, EDX, SEM, and TEM, were applied to characterize CuO @OVLe NCs. The UV/Vis spectrum demonstrated a strong peak at 345 nm. Furthermore, FTIR, XRD, and EDX validated the coating operation’s contact with colloidal CuO @OVLe NCs. According to TEM and SEM analyses, CuO @OVLe NCs exhibited a spherical shape and uniform distribution of size with aggregation, for an average size of ~75 nm. The nanoparticles demonstrated a considerable antibacterial effect against E. faecium bacterial growth, as well as an increased inhibition rate in a dose-dependent manner on the MCF-7, PC3, and HpeG2 cancer cell lines and a decreased inhibition rate on WRL-68. Molecular docking and MD simulation were used to demonstrate the high binding affinity of a ligand (Oleuropein) toward the lectin receptor complex of the outer membrane to vancomycin-resistant E. faecium (VREfm) via amino acids (Leu 195, Thr 288, His 165, and Ser 196). Hence, our results expand the accessibility of OVLe’s bioactive components as a promising natural source for the manufacture of physiologically active components and the creation of green biosynthesis of metal nanocrystals. Full article
Show Figures

Figure 1

21 pages, 11354 KiB  
Article
β-Caryophyllene: A Therapeutic Alternative for Intestinal Barrier Dysfunction Caused by Obesity
by Uriel Ulises Rodríguez-Mejía, Juan Manuel Viveros-Paredes, Adelaida Sara Minia Zepeda-Morales, Lucrecia Carrera-Quintanar, José Sergio Zepeda-Nuño, Gilberto Velázquez-Juárez, Vidal Delgado-Rizo, Trinidad García-Iglesias, Luisa Guadalupe Camacho-Padilla, Elizabeth Varela-Navarro, Luis Alberto Anguiano-Sevilla, Esmeralda Marisol Franco-Torres and Rocio Ivette López-Roa
Molecules 2022, 27(19), 6156; https://doi.org/10.3390/molecules27196156 - 20 Sep 2022
Cited by 1 | Viewed by 2727
Abstract
Obesity is an excessive accumulation of fat that exacerbates the metabolic and inflammatory processes. Studies associate these processes with conditions and dysregulation in the intestinal tract, increased concentrations of lipopolysaccharides (LPSs) in the blood, differences in the abundance of intestinal microbiota, and the [...] Read more.
Obesity is an excessive accumulation of fat that exacerbates the metabolic and inflammatory processes. Studies associate these processes with conditions and dysregulation in the intestinal tract, increased concentrations of lipopolysaccharides (LPSs) in the blood, differences in the abundance of intestinal microbiota, and the production of secondary metabolites such as short-chain fatty acids. β-Caryophyllene (BCP) is a natural sesquiterpene with anti-inflammatory properties and with the potential purpose of fighting metabolic diseases. A diet-induced obesity model was performed in 16-week-old C57BL/6 mice administered with BCP [50 mg/kg]. A reduction in the expression of Claudin-1 was observed in the group with a high-fat diet (HFD), which was caused by the administration of BCP; besides BCP, the phylaAkkermansia and Bacteroidetes decreased between the groups with a standard diet (STD) vs. HFD. Nevertheless, the use of BCP in the STD increased the expression of these phyla with respect to fatty acids; a similar effect was observed, in the HFD group that had a decreasing concentration that was restored with the use of BCP. The levels of endotoxemia and serum leptin increased in the HFD group, while in the HFD + BCP group, similar values were found to those of the STD group, attributing the ability to reduce these in conditions of obesity. Full article
Show Figures

Graphical abstract

14 pages, 3184 KiB  
Article
Rapid Screening of Lipase Inhibitors in Scutellaria baicalensis by Using Porcine Pancreatic Lipase Immobilized on Magnetic Core–Shell Metal–Organic Frameworks
by Jinfang Xu, Pengkun Cao, Zhiyu Fan, Xujing Luo, Gangqiang Yang, Tingli Qu and Jianping Gao
Molecules 2022, 27(11), 3475; https://doi.org/10.3390/molecules27113475 - 27 May 2022
Cited by 13 | Viewed by 2455
Abstract
As for ligand fishing, the current immobilization approaches have some potential drawbacks such as the small protein loading capacity and difficult recycle process. The core–shell metal–organic frameworks composite (Fe3O4-COOH@UiO-66-NH2), which exhibited both magnetic characteristics and large specific [...] Read more.
As for ligand fishing, the current immobilization approaches have some potential drawbacks such as the small protein loading capacity and difficult recycle process. The core–shell metal–organic frameworks composite (Fe3O4-COOH@UiO-66-NH2), which exhibited both magnetic characteristics and large specific surface area, was herein fabricated and used as magnetic support for the covalent immobilization of porcine pancreatic lipase (PPL). The resultant composite Fe3O4-COOH@UiO-66-NH2@PPL manifested a high loading capacity (247.8 mg/g) and relative activity recovery (101.5%). In addition, PPL exhibited enhanced tolerance to temperature and pH after immobilization. Then, the composite Fe3O4-COOH@UiO-66-NH2@PPL was incubated with the extract of Scutellaria baicalensis to fish out the ligands. Eight lipase inhibitors were obtained and identified by UPLC-Q-TOF-MS/MS. The feasibility of the method was further confirmed through an in vitro inhibitory assay and molecular docking. The proposed ligand fishing technique based on Fe3O4-COOH@UiO-66-NH2@PPL provided a feasible, selective, and effective platform for discovering enzyme inhibitors from natural products. Full article
Show Figures

Figure 1

13 pages, 657 KiB  
Article
Characterization of Primary Action Mode of Eight Essential Oils and Evaluation of Their Antibacterial Effect against Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Inoculated in Turkey Meat
by Chedia Aouadhi, Ahlem Jouini, Dhekra Mechichi, Mouna Boulares, Safa Hamrouni and Abderrazak Maaroufi
Molecules 2022, 27(8), 2588; https://doi.org/10.3390/molecules27082588 - 18 Apr 2022
Cited by 5 | Viewed by 2010
Abstract
The current study aims to evaluate the antimicrobial activity of eight essential oils (EOs) against multidrug-resistant Escherichia coli strains, producing extended-spectrum β-lactamase (ESBL) enzymes and isolated from foods. Disc-diffusion assay showed that the inhibition diameters generated by EOs varied significantly among the tested [...] Read more.
The current study aims to evaluate the antimicrobial activity of eight essential oils (EOs) against multidrug-resistant Escherichia coli strains, producing extended-spectrum β-lactamase (ESBL) enzymes and isolated from foods. Disc-diffusion assay showed that the inhibition diameters generated by EOs varied significantly among the tested EOs and strains. In fact, EOs extracted from Thymus capitaus, Eucalyptus camaldulensis, Trachyspermum ammi and Mentha pulegium exerted an important antimicrobial effect against tested strains, with the diameters of inhibition zones varied between 20 and 27 mm. Moreover, minimal inhibition and bactericidal concentration (MIC and MBC) values demonstrated that T. capitatus EOs generate the most important inhibitory effect against E. coli strains, with MIC values ranging from 0.02 to 0.78%. Concerning the mode of action of T. capitatus EO, the obtained data showed that treatment with this EO at its MIC reduced the viability of E. coli strains, their tolerance to NaCl and promoted the loss of 260-nm-absorbing material. In addition, in the presence of T. capitatus EO, cells became disproportionately sensitive to subsequent autolysis. Moreover, the inhibitory effect of T. capitatus was evaluated against two E. coli strains, experimentally inoculated (105 CFU/g) in minced turkey meat, in the presence of two different concentrations of EO (MIC and 2 × MIC), and stored for 15 days. In both samples, EO exerted a bacteriostatic effect in the presence of concentrations equal to MIC. Interestingly, at 2 × CMI concentration, the bactericidal activity was pronounced after 15 days of storage. Our results highlighted that the use of essential oils, specially of T. capitatus, to inhibit or prevent the growth of extended-spectrum β-lactamase (ESBL)-producing E. coli in food, may be a promising alternative to chemicals. Full article
Show Figures

Figure 1

15 pages, 4249 KiB  
Article
Application of β-Glucosidase in a Biphasic System for the Efficient Conversion of Polydatin to Resveratrol
by Jie Zhou, Meng Liang, Yu Lin, Hao Pang, Yutuo Wei, Ribo Huang and Liqin Du
Molecules 2022, 27(5), 1514; https://doi.org/10.3390/molecules27051514 - 23 Feb 2022
Cited by 8 | Viewed by 1764
Abstract
Resveratrol, an ingredient of traditional Chinese medicine, has beneficial effects on human health and huge potential for application in modern medicine. Polydatin is extracted from plants and then deglycosylated into resveratrol; enzymatic methods are preferred for this reaction. In this study, a β-D-glucosidase [...] Read more.
Resveratrol, an ingredient of traditional Chinese medicine, has beneficial effects on human health and huge potential for application in modern medicine. Polydatin is extracted from plants and then deglycosylated into resveratrol; enzymatic methods are preferred for this reaction. In this study, a β-D-glucosidase from Sphingomonas showed high efficiency in transforming polydatin into resveratrol and was tolerant toward organic solvents. Applying this enzyme in a biphasic transformation system resulted in 95.3% conversion of 20% concentration crude polydatin to resveratrol in 4 h. We thus report a new method for high-efficiency, clean production of resveratrol. Full article
Show Figures

Figure 1

20 pages, 14891 KiB  
Article
Separation and Enrichment of Alkaloids from Coptidis Rhizoma and Euodiae Fructus by Macroporous Resin and Evaluation of the Effect on Bile Reflux Gastritis Rats
by Yan-Ying Li, Jin-Lei Feng, Zheng Li, Xin-Yu Zang and Xiu-Wei Yang
Molecules 2022, 27(3), 724; https://doi.org/10.3390/molecules27030724 - 22 Jan 2022
Cited by 6 | Viewed by 3158
Abstract
The Zuojin Pill consists of Coptidis Rhizoma (CR) and Euodiae Fructus (EF). It has been a classic prescription for the treatment of gastrointestinal diseases in China since ancient times. Alkaloids are considered to be its main pharmacologically active substances. The authors of the [...] Read more.
The Zuojin Pill consists of Coptidis Rhizoma (CR) and Euodiae Fructus (EF). It has been a classic prescription for the treatment of gastrointestinal diseases in China since ancient times. Alkaloids are considered to be its main pharmacologically active substances. The authors of the present study investigated the feasibility of preparing high purity total alkaloids (TAs) from CR and EF extracts separately and evaluated the effect for the treatment of bile reflux gastritis (BRG). Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. were used in the study. An optimized method for the enrichment and purification of TAs with macroporous resin was established. Furthermore, qualitative analysis by using ultra-high performance liquid chromatography coupled with electrospray ionization and quadrupole-time of flight mass spectrometry (UHPLC–ESI–QTOF-MS) was explored to identify the components of purified TAs. Thirty-one compounds, thirty alkaloids and one phenolic compound, were identified or tentatively assigned by comparison with reference standards or literature data. A method of ultra-high performance liquid chromatography coupled with diode array detector (UHPLC–DAD) for quantitative analysis was also developed. The contents of nine alkaloids were determined. Moreover, a rat model of BRG was used to investigate the therapeutic effect of the combination of purified TAs from CR and EF. Gastric pathologic examination suggested that the alkaloids’ combination could markedly attenuate the pathological changes of gastric mucosa. Full article
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 485 KiB  
Review
Natural Compounds and Products from an Anti-Aging Perspective
by Geir Bjørklund, Mariia Shanaida, Roman Lysiuk, Monica Butnariu, Massimiliano Peana, Ioan Sarac, Oksana Strus, Kateryna Smetanina and Salvatore Chirumbolo
Molecules 2022, 27(20), 7084; https://doi.org/10.3390/molecules27207084 - 20 Oct 2022
Cited by 48 | Viewed by 10408
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, [...] Read more.
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants’ fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water. Full article
55 pages, 23733 KiB  
Review
Semisynthetic Derivatives of Pentacyclic Triterpenes Bearing Heterocyclic Moieties with Therapeutic Potential
by Gabriela Nistor, Cristina Trandafirescu, Alexandra Prodea, Andreea Milan, Andreea Cristea, Roxana Ghiulai, Roxana Racoviceanu, Alexandra Mioc, Marius Mioc, Viviana Ivan and Codruța Șoica
Molecules 2022, 27(19), 6552; https://doi.org/10.3390/molecules27196552 - 3 Oct 2022
Cited by 16 | Viewed by 2534
Abstract
Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological [...] Read more.
Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological activities, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and hepatoprotective effects, which can be employed in therapy. However, due to their high lipophilicity, which is considered to exert a significant influence on their bioavailability, their current use is limited. A frequent approach employed to overcome this obstacle is the chemical derivatization of the core structure with different types of moieties including heterocycles, which are considered key elements in medicinal chemistry. The present review aims to summarize the literature published in the last 10 years regarding the derivatives of pentacyclic triterpenes bearing heterocyclic moieties and focuses on the biologically active derivatives as well as their structure–activity relationships. Predominantly, the targeted positions for the derivatization of the triterpene skeleton are C-3 (hydroxyl/oxo group), C-28 (hydroxyl/carboxyl group), and C-30 (allylic group) or the extension of the main scaffold by fusing various heterocycles with the A-ring of the phytocompound. In addition, numerous derivatives also contain linker moieties that connect the triterpenic scaffold with heterocycles; one such linker, the triazole moiety, stands out as a key pharmacophore for its biological effect. All these studies support the hypothesis that triterpenoid conjugates with heterocyclic moieties may represent promising candidates for future clinical trials. Full article
Show Figures

Figure 1

13 pages, 1486 KiB  
Review
Photoactive Herbal Compounds: A Green Approach to Photodynamic Therapy
by Cheruthazhakkat Sulaiman, Blassan P. George, Indira Balachandran and Heidi Abrahamse
Molecules 2022, 27(16), 5084; https://doi.org/10.3390/molecules27165084 - 10 Aug 2022
Cited by 13 | Viewed by 2738
Abstract
Photodynamic therapy (PDT) is a minimally invasive, alternative, and promising treatment for various diseases, including cancer, actinic keratosis, Bowen’s disease, macular degeneration, and atherosclerotic plaques. PDT involves three different components, photosensitizers (PS), molecular oxygen, and light. The photoactivation of administered PSs using a [...] Read more.
Photodynamic therapy (PDT) is a minimally invasive, alternative, and promising treatment for various diseases, including cancer, actinic keratosis, Bowen’s disease, macular degeneration, and atherosclerotic plaques. PDT involves three different components, photosensitizers (PS), molecular oxygen, and light. The photoactivation of administered PSs using a specific wavelength of light in the presence of molecular oxygen leads to the generation of reactive oxygen species that leads to tumour cell death. Photosensitizing potentials of many commercially available compounds have been reported earlier. However, the possibilities of PDT using herbal medicines, which contain many photosensitizing phytochemicals, are not much explored. Medicinal plants with complex phytochemical compound mixtures have the benefit over single compounds or molecules in the treatment of many diseases with the benefit of low or reduced toxic side effects. This review emphasizes the role of various herbal medicines either alone or in combination to enhance the therapeutic outcome of photodynamic therapy. Full article
Show Figures

Graphical abstract

23 pages, 404 KiB  
Review
Agarwood—The Fragrant Molecules of a Wounded Tree
by Pooja Shivanand, Nurul Fadhila Arbie, Sarayu Krishnamoorthy and Norhayati Ahmad
Molecules 2022, 27(11), 3386; https://doi.org/10.3390/molecules27113386 - 24 May 2022
Cited by 20 | Viewed by 4349
Abstract
Agarwood, popularly known as oudh or gaharu, is a fragrant resinous wood of high commercial value, traded worldwide and primarily used for its distinctive fragrance in incense, perfumes, and medicine. This fragrant wood is created when Aquilaria trees are wounded and infected by [...] Read more.
Agarwood, popularly known as oudh or gaharu, is a fragrant resinous wood of high commercial value, traded worldwide and primarily used for its distinctive fragrance in incense, perfumes, and medicine. This fragrant wood is created when Aquilaria trees are wounded and infected by fungi, producing resin as a defense mechanism. The depletion of natural agarwood caused by overharvesting amidst increasing demand has caused this fragrant defensive resin of endangered Aquilaria to become a rare and valuable commodity. Given that instances of natural infection are quite low, artificial induction, including biological inoculation, is being conducted to induce agarwood formation. A long-term investigation could unravel insights contributing toward Aquilaria being sustainably cultivated. This review will look at the different methods of induction, including physical, chemical, and biological, and compare the production, yield, and quality of such treatments with naturally formed agarwood. Pharmaceutical properties and medicinal benefits of fragrance-associated compounds such as chromones and terpenoids are also discussed. Full article
Back to TopTop