Minerals as Advanced Materials

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Crystallography and Physical Chemistry of Minerals & Nanominerals".

Deadline for manuscript submissions: closed (1 May 2022) | Viewed by 4377

Special Issue Editor

Department of Crystallography, Saint-Petersburg State University, University emb. 7/9, 199034 St. Petersburg, Russia
Interests: minerals; Earth sciences; crystallography; X-ray diffraction; inorganic chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Minerals have been of great interest to chemists and physicists. The disadvantage of minerals is the presence of impurities that hamper or even preclude the study of physical properties on natural samples. However, the discovery of minerals with new structures and chemical compositions facilitates the identification of new chemical compounds that can be later prepared in the lab and put under the scrutiny of the physical characterization. This approach “from minerals to materials” avoids the trial-and-error method, often used in an exploratory synthesis, and may be advantageous over computational predictions of thermodynamic stability that can be biased by inaccuracies of the computational methods.

This Special Issue welcomes contributions on minerals and their synthetic analogues, new mineral species with potentially interesting applications, mineralogical crystallography, synthesis of mineral-related compounds, and properties of mineral-related inorganic materials.

Dr. Oleg I. Siidra
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • minerals
  • synthetic mineral analogues
  • materials
  • crystal structure
  • inorganic synthesis
  • structure-property relationships

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 25170 KiB  
Article
Ion-Exchange-Induced Transformation and Mechanism of Cooperative Crystal Chemical Adaptation in Sitinakite: Theoretical and Experimental Study
by Taras L. Panikorovskii, Galina O. Kalashnikova, Anatoly I. Nikolaev, Igor A. Perovskiy, Ayya V. Bazai, Victor N. Yakovenchuk, Vladimir N. Bocharov, Natalya A. Kabanova and Sergey V. Krivovichev
Minerals 2022, 12(2), 248; https://doi.org/10.3390/min12020248 - 15 Feb 2022
Cited by 4 | Viewed by 2433
Abstract
The microporous titanosilicate sitinakite, KNa2Ti4(SiO4)2O5(OH)·4H2O, was first discovered in the Khibiny alkaline massif. This material is also known as IONSIV IE-911 and is considered as one of the most effective sorbents [...] Read more.
The microporous titanosilicate sitinakite, KNa2Ti4(SiO4)2O5(OH)·4H2O, was first discovered in the Khibiny alkaline massif. This material is also known as IONSIV IE-911 and is considered as one of the most effective sorbents for Cs+ and Sr2+ from water solutions. We investigate a mechanism of cooperative crystal chemical adaptation caused by the incorporation of La3+ ions into sitinakite structure by the combination of theoretical (geometrical–topological analysis, Voronoi migration map calculation, structural complexity calculation) and empirical methods (PXRD, SCXRD, Raman spectroscopy, scanning electron microscopy). The natural crystals of sitinakite (a = 7.8159(2), c = 12.0167(3) Å) were kept in a 1M solution of La(NO3)3 for 24 h. The ordering of La3+ cations in the channels of the ion-exchanged form La3+Ti4(SiO4)2O5(OH)·4H2O (a = 11.0339(10), b = 11.0598(8), c = 11.8430(7) Å), results in the symmetry breaking according to the group–subgroup relation P42/mcmCmmm. Full article
(This article belongs to the Special Issue Minerals as Advanced Materials)
Show Figures

Figure 1

9 pages, 3862 KiB  
Article
Whitlockite-Type Structure as a Matrix for Optical Materials: Synthesis and Characterization of Novel TM-SM Co-Doped Phosphate Ca9Gd(PO4)7, a Single-Phase White Light Phosphors
by Ivan V. Nikiforov, Dina V. Deyneko, Dmitry A. Spassky, Bogdan I. Lazoryak and Sergey M. Aksenov
Minerals 2022, 12(1), 76; https://doi.org/10.3390/min12010076 - 09 Jan 2022
Viewed by 1213
Abstract
A series of novel phosphates with the general formulas Ca9Gd0.9−xTm0.1Smx(PO4)7 and Ca9Gd0.9−yTmySm0.1(PO4)7 were synthesized by solid-state method. As-obtained phosphates [...] Read more.
A series of novel phosphates with the general formulas Ca9Gd0.9−xTm0.1Smx(PO4)7 and Ca9Gd0.9−yTmySm0.1(PO4)7 were synthesized by solid-state method. As-obtained phosphates were characterized by powder X-ray diffraction and second harmonic generation analyses, dielectric measurements, luminescence spectroscopy. All samples were single phase and characterized by the whitlockite-type structure with space group R3c. An influence of admixture concentration of REE3+ ions in the initial host on dielectric properties was studied in details. Synthesized phosphates are characterized by intensive luminescence. The emission in the orange region of the visible spectrum is observed for Ca9Gd0.9Sm0.1(PO4)7 with a maximum intensity band at 602 nm. The line in blue region at 455 nm, which corresponds to 1D23F4 Tm3+ transition, is registered for Ca9Gd0.9Tm0.1(PO4)7. Emission in the white region of CIE coordinates was registered for Tm-Sm co-doped compounds. Full article
(This article belongs to the Special Issue Minerals as Advanced Materials)
Show Figures

Figure 1

Back to TopTop