Special Issue "Small Scale Deformation using Advanced Nanoindentation Techniques, Volume II"

A special issue of Micromachines (ISSN 2072-666X).

Deadline for manuscript submissions: 1 May 2020.

Special Issue Editors

Prof. Dr. Ting Tsui
E-Mail Website
Guest Editor
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Interests: nanoindentation; sub-micron fabrication; nanomechanics; thin film delaminations; integrate circuits; cell immobilization; morphology control of cells
Special Issues and Collections in MDPI journals
Prof. Dr. Alex A. Volinsky
E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Ave. ENB 118 Tampa, FL 33620, USA
Tel. 8139745658
Interests: thin films processing; mechanical properties and characterization; adhesion and fracture of thin films; nanoindentation; pattern formation; irradiated materials properties; X-Ray diffraction
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Small-scale mechanical deformations have gained a significant interest over the past few decades, driven by the advances in integrated circuits and microelectromechanical systems. One of the most powerful and versatile characterization methods is the nanoindentation technique. The capabilities of these depth-sensing instruments have been improved considerably. They can perform experiments in vacuum and at high temperatures, such as in situ SEM and TEM nanoindenters. This allows researchers to visualize mechanical deformation and dislocation motion in real time. The time-dependent behavior of soft materials has also been studied in recent research works. This Special Issue on “Small Scale Deformation using Advanced Nanoindentation Techniques“ will provide a forum for researchers from the academic and industrial communities to present advances in the field of small-scale contact mechanics. Materials of interest include metals, glass, and ceramics. Manuscripts related to deformations of biomaterials and biological-related specimens are also welcome. Topics of interest include but are not limited to:

  • Small-scale facture;
  • Nanoscale plasticity and creep;
  • Size-dependent deformation phenomena;
  • Deformation of biological cells;
  • Mechanical properties of cellular and sub-cellular components;
  • Novel mechanical properties characterization techniques;
  • New modeling methods;
  • Environmentally-controlled nanoindentation;
  • In situ SEM and TEM indentation.

Prof. Dr. Ting Tsui
Prof. Dr. Alex A. Volinsky
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nanoindentation
  • Small-scale mechanical properties
  • Deformation
  • Cells
  • Plasticity
  • Fracture
  • Contact mechanics

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
The Indentation-Induced Pop-in Phenomenon and Fracture Behaviors of GaP(100) Single-Crystal
Micromachines 2019, 10(11), 752; https://doi.org/10.3390/mi10110752 - 02 Nov 2019
Abstract
The deformation behaviors and fracture features of GaP(100) single-crystal are investigated by using nano- and micro-scale indentation techniques. The hardness and Young’s modulus were measured by nanoindentation using a Berkovich diamond indenter with continuous contact stiffness measurements (CSM) mode and the values obtained [...] Read more.
The deformation behaviors and fracture features of GaP(100) single-crystal are investigated by using nano- and micro-scale indentation techniques. The hardness and Young’s modulus were measured by nanoindentation using a Berkovich diamond indenter with continuous contact stiffness measurements (CSM) mode and the values obtained were 12.5 ± 1.2 GPa and 152.6 ± 12.8 GPa, respectively. In addition, the characteristic “pop-in” was observed in the loading portion of load-displacement curve, which was caused by the nucleation and/or propagation of dislocations. An energetic estimation methodology on the associated nanoindentation-induced dislocation numbers resulting from the pop-in events was discussed. Furthermore, the Vickers indentation induced fracture patterns of GaP(100) single-crystal were observed and analyzed using optical microscopy. The obtained fracture toughness KC of GaP(100) single-crystal was ~1.7 ± 0.1 MPa·m1/2, which is substantially higher than the KIC values of 0.8 MPa·m1/2 and 1.0 MPa·m1/2 previously reported for of single-crystal and polycrystalline GaP, respectively. Full article
Show Figures

Figure 1

Back to TopTop