Metal Rolling and Heat Treatment Processing

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 3688

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Interests: rolling and heat treatment of metal materials; process technology and equipment; microstructure and property control

Special Issue Information

Dear Colleagues,

Rolling and heat treatment are the key processes that determine the shape and properties of metal materials and are widely used in the preparation process of metal materials. According to different product requirements, various new rolling and heat treatment technologies and processes have been developed successively. Metal materials produced by rolling and heat treatment are widely used in automobile, construction, energy, ocean, electric power and other economic pillar industries, which are closely related to people's lives.

With the continuous improvement of users' requirements for product shape and performance, research on deformation and microstructure evolution rules during rolling and heat treatment has become increaingly important, promoting the continuous upgrading of metal forming and heat treatment technology and meeting the development trend of low energy consumption and low pollution in the material processing industry and people's demand for a good ecological environment. In addition, with the development of intelligent and digital technology, intelligent control of metal material rolling and heat treatment processes is imminent.

This Special Issue focuses on the latest scientific and technological progress related to the rolling and heat treatment of metal materials. The topics will include research and development of new rolling process and new equipment, development of advanced heat treatment technology, numerical simulation of material forming and heat treatment, microstructure and performance control of metal material forming and heat treatment, development of new products based on rolling and heat treatment, intelligent rolling and heat treatment, etc.

Prof. Dr. Tianliang Fu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal material
  • rolling
  • heat treatment
  • process technology and equipment
  • numerical simulation and analysis
  • microstructure and performance control
  • TMCP technology
  • intelligent control

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4753 KiB  
Article
Numerical Study on the Heat Transfer of Confined Air-Jet Quenching of Steel Sheets
by Yanqi Ye, Tianliang Fu, Guanghao Liu and Guodong Wang
Metals 2024, 14(4), 377; https://doi.org/10.3390/met14040377 - 24 Mar 2024
Viewed by 663
Abstract
The high flatness quenching of ultra-high-strength steel sheets is a technical problem in the steel industry. In this study, the traditional water and spray quenching methods were abandoned, and the roller-constrained slot air-jet quenching method was proposed for steel sheets below 3 mm [...] Read more.
The high flatness quenching of ultra-high-strength steel sheets is a technical problem in the steel industry. In this study, the traditional water and spray quenching methods were abandoned, and the roller-constrained slot air-jet quenching method was proposed for steel sheets below 3 mm thickness, which provided a theoretical reference for producing thinner, wider, and higher-flatness steel sheets. A 2D roller-constrained slot air-jet numerical model was established to study the flow field and heat transfer characteristics under the conditions of Reynolds number 24,644–41,076, a dimensionless jet height of 16–24, and a jet angle of 45°–135°. The results showed that the average Nusselt number on the heat transfer surface was proportional to Rem. At the same time, high-intensity heat transfer was achieved when the dimensionless height and jet angle were properly combined. At the same Reynolds number, the heat transfer intensity could be increased by 289%. In addition, the position of the peak Nusselt number was affected by reducing the jet angle, which served as an effective strategy for adjusting the martensite ratio and obtaining ideal mechanical properties. Full article
(This article belongs to the Special Issue Metal Rolling and Heat Treatment Processing)
Show Figures

Figure 1

22 pages, 7668 KiB  
Article
Digital Model of Plan View Pattern Control for Plate Mills Based on Machine Vision and the DBO-RBF Algorithm
by Zhijie Jiao, Shiwen Gao, Chujie Liu, Junyi Luo, Zhiqiang Wang, Guanyu Lang, Zhong Zhao, Zhiqiang Wu and Chunyu He
Metals 2024, 14(1), 94; https://doi.org/10.3390/met14010094 - 12 Jan 2024
Viewed by 913
Abstract
Plan view pattern control (PVPC) is a highly effective means to improve the rectangularization of products and increase the yield of plate mills. By optimizing the parameters of PVPC, the effect of PVPC can be further improved. In this paper, a digital model [...] Read more.
Plan view pattern control (PVPC) is a highly effective means to improve the rectangularization of products and increase the yield of plate mills. By optimizing the parameters of PVPC, the effect of PVPC can be further improved. In this paper, a digital model for predicting and controlling crop patterns of plates is proposed based on the radial basis function (RBF) neural network optimized by the dung beetle optimizer (DBO) algorithm. Machine vision technology is used to obtain a digital description of the crop pattern of the rolled plates. An automatic threshold adjustment algorithm is proposed for the image processing of plate pattern photos during the rolling process. The error between the pattern data calculated through machine vision technology and the measured pattern data does not exceed 3 mm. The spread parameters of the RBF are optimized using DBO, and the digital model structure is established. The goodness of fit (R2) and the mean absolute error (MAE) are used as evaluation indicators. The results show that the digital model established based on DBO-RBF has good predictive and control performance, realizing intelligent prediction of the crop pattern of plates and the parameter optimization of PVPC. In practical applications, the crop cutting loss area of irregular deformation at the end of the plate can be reduced by 31%. Full article
(This article belongs to the Special Issue Metal Rolling and Heat Treatment Processing)
Show Figures

Figure 1

14 pages, 12260 KiB  
Article
Achieving High Plasticity and High Toughness of Low-Carbon Low-Alloy Steel through Intercritical Heat Treatment
by Long Huang, Jia Liu, Xiangtao Deng and Zhaodong Wang
Metals 2023, 13(10), 1737; https://doi.org/10.3390/met13101737 - 13 Oct 2023
Cited by 1 | Viewed by 1032
Abstract
Medium manganese steel has excellent comprehensive properties due to the TRIP effect of retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese elements [...] Read more.
Medium manganese steel has excellent comprehensive properties due to the TRIP effect of retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese elements through intercritical heat treatment. The influence of intercritical quenching temperature on the content and characteristics of the retained austenite, as well as the functional mechanism of the retained austenite during low-temperature impact, was studied. The results showed that the content of the retained austenite increased from 12% to 17%, and its distribution extended from grain boundaries to martensite lath boundaries, with increasing intercritical quenching temperature. The retained austenite on the grain boundaries was in blocks, and that on the martensitic lath boundaries formed slender domains. The stability of the retained austenite was achieved through the enrichment of C and Mn during intercritical heat treatment. The contribution of retained austenite to low-temperature mechanical properties was closely related to its stability. The retained austenite with poor stability underwent martensite transformation at low temperatures, and the high-carbon martensite was a brittle phase that became the nucleation site of cracks or the path of crack growth during impact. Stable retained austenite passivated crack tips and hindered crack propagation during impacts, which improved the impact performance of the steel. Full article
(This article belongs to the Special Issue Metal Rolling and Heat Treatment Processing)
Show Figures

Figure 1

13 pages, 6463 KiB  
Article
Influence of 0.5% Ag Addition on Low-Cycle Fatigue Behavior of Hot-Extruded Al-5Cu-0.8Mg-0.15Zr-0.2Sc Alloy Subjected to Peak-Aging Treatment
by Ying Wang, Lijia Chen, Ge Zhou, Ruochong Liu and Siqian Zhang
Metals 2023, 13(10), 1734; https://doi.org/10.3390/met13101734 - 12 Oct 2023
Viewed by 580
Abstract
The total strain amplitude controlled low-cycle fatigue tests were performed at room temperature and 200 °C to clarify the influence of 0.5% Ag addition on the low-cycle fatigue behavior of an Al-5Cu-0.8Mg-0.15Zr-0.2Sc (in wt.%) alloy subjected to the peak-aging treatment after hot extrusion [...] Read more.
The total strain amplitude controlled low-cycle fatigue tests were performed at room temperature and 200 °C to clarify the influence of 0.5% Ag addition on the low-cycle fatigue behavior of an Al-5Cu-0.8Mg-0.15Zr-0.2Sc (in wt.%) alloy subjected to the peak-aging treatment after hot extrusion and solid solution treatment. The experimental results demonstrate that during low-cycle fatigue deformation, peak-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloys exhibit cyclic hardening, cyclic stability, or cyclic hardening followed by cyclic stability, depending on the Ag addition, imposed total strain amplitude, and testing temperature. The addition of 0.5% Ag greatly increases the low-cycle fatigue life of peak-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc alloy, where the maximum rising amplitude is about 126.7% at ambient temperature and approximately 90.1% at 200 °C. Furthermore, it has been discovered that the addition of 0.5% Ag has no effect on the beginning and spreading modes of low-cycle fatigue fractures. For the peak-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloys subjected to low-cycle fatigue deformation at different total strain amplitudes and testing temperatures used in this investigation, fatigue cracks initiate trans granularly at the free surface of the fatigue specimen and propagate in a trans granular mode. Full article
(This article belongs to the Special Issue Metal Rolling and Heat Treatment Processing)
Show Figures

Figure 1

Back to TopTop