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Abstract: Plan view pattern control (PVPC) is a highly effective means to improve the rectangular-
ization of products and increase the yield of plate mills. By optimizing the parameters of PVPC, the
effect of PVPC can be further improved. In this paper, a digital model for predicting and controlling
crop patterns of plates is proposed based on the radial basis function (RBF) neural network optimized
by the dung beetle optimizer (DBO) algorithm. Machine vision technology is used to obtain a digital
description of the crop pattern of the rolled plates. An automatic threshold adjustment algorithm
is proposed for the image processing of plate pattern photos during the rolling process. The error
between the pattern data calculated through machine vision technology and the measured pattern
data does not exceed 3 mm. The spread parameters of the RBF are optimized using DBO, and the
digital model structure is established. The goodness of fit (R2) and the mean absolute error (MAE) are
used as evaluation indicators. The results show that the digital model established based on DBO-RBF
has good predictive and control performance, realizing intelligent prediction of the crop pattern of
plates and the parameter optimization of PVPC. In practical applications, the crop cutting loss area of
irregular deformation at the end of the plate can be reduced by 31%.

Keywords: plate; PVPC; digital model; DBO-RBF; machine vision

1. Introduction

Plate products are essential key materials for national economic construction. At
present, the competition in the iron and steel industry is becoming increasingly fierce, so
improving product yield and reducing resource loss are key to enhancing the competi-
tiveness of plate enterprises [1,2]. In the plate rolling process, the crop cutting loss has a
great influence on the yield of the product. This is because plate rolling is a typical three-
dimensional deformation process, where the metal flows along the rolling direction and the
vertical rolling direction. The deformation law of the crop is more complicated, resulting
in irregular crop patterns on the rolled plate. The plan view pattern is the core quality
indicator of plates and affects the yield and production efficiency of the plate product.

The basic principle of the plan view pattern control (PVPC) process is to quantitatively
predict the pattern of the rolled plate and then convert it into the abnormal distribution of
the plate thickness given at the last pass of the sizing or broadsiding phase according to the
“constant volume principle”. This abnormal thickness distribution is used to improve the
rectangularity of the rolled parts in the later rolling stages, as shown in Figure 1.

There are roughly three research methods for controlling the plan pattern of plates.
The first is the analytical method, which is the earliest method of studying the deformation
process of plate patterns. On the basis of the law of minimum resistance and the constant
volume principle, the theoretical equation for three-dimensional metal flow can be obtained,
which lays a foundation for the study of plan view pattern prediction of plates. However, in
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the derivation of these equations, it is necessary to make assumptions and simplifications,
which will inevitably increase the model’s error. Moreover, in the plate rolling process, the
irregular deformation regions of plates are difficult to express by strict theoretical models.
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Figure 1. Rolling process of PVPC: (a) PVPC sizing rolling, and (b) PVPC broadsiding rolling.

The second method is physical simulation and industrial testing. Based on theoretical
models, this method involves carrying out physical simulation experiment in the laboratory
and industrial experiments. The simulations and experimental results are used to improve
the accuracy of the model. Hiroyasu Shigemori et al. [3] proposed a technique that uses a
locally weighted regression model and performs parameter identification, and applied this
method to plan view pattern control of plates. Yao et al. [4] established a prediction model
and a control model, which reduced the shear loss of the product. Han [5] optimized the
regression model of plan view pattern margin prediction and plan view pattern control
and reduced the loss of head, tail, and edge. Deng [6] improved the prediction and control
model of plan view pattern control of plates. Ni [7] combined the sequential quadratic
programming (SQP) optimization algorithm with prediction models and control models of
plan view pattern control. These studies improved the online application of PVPC function.
Shen et al. [8] developed a mathematical model of PVPC and achieved good results in
actual production.

In recent years, with the development of computer science, finite element simulation
technology has become increasingly advanced, and it has been widely used in rolling
process simulation. Liu [9] proposed the mathematical model of plan pattern prediction
and control, based on finite element simulation. This model provides a theoretical basis
for plate production. Liu [10] verified that the finite element simulation method can
be used to study the PVPC process. The calculation results can provide a theoretical
reference for the selection of rolling parameters. He [11] verified the accuracy of single-pass
simulation using finite element tools. Zhao et al. [12] developed a full restart method
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based on the capabilities of the finite element software ANSYS LS-DYNA (https://www.
ansys.com/products/structures/ansys-ls-dyna, accessed on 7 January 2024), and built
a PVPC model to predict the plan view pattern of each roll pass. Gu [13] established
the simulation rolling model of vertical–horizontal rolling. Yao et al. [4]. established a
prediction and control model of plan view patterns. Ruan et al. [14,15]. developed a
3D rigid plastic thermomechanical finite element model to study the nonuniform plans
of plates during hot rolling and improved the rectangularity of plates. Horie et al. [16]
investigated the effect of dog bone width on the end profile of plan view patterns of plates
in DBR. This study further explained the effects of plate size and dog bone height on
the length of ‘fish tails‘. Ruan et al. [17]. established a three-dimensional rigid plastic
finite element model of vertical–horizontal (V–H) hot rolling and elucidated the formation
law of dog bone plans during vertical rolling and of width expansion behavior during
horizontal rolling. Jiao et al. [18]. simplified the finite element simulation results, accurately
calculating the forward slip and the time of the rolling process for the online application.
Ding et al. [19] used the controllable point setting method to control the plan view patterns
and used the finite element method to analyze the influence of different setting points and
setting distances on the rectangularity of the finished product. However, the accuracy and
reliability of the finite element simulation method often depend on the setting of rolling
process parameters, modeling level, and boundary conditions, and whether the simulation
conditions of load conditions are in accordance with the reality. Therefore, the accuracy of
the model varies greatly.

In the context of Made in China 2025 and Industry 4.0, digitalization is in an important
position. Digital Twins are thought of as a digital counterpart to physical production
artefacts. Therefore, to be useful for every purpose in their environment they have a
high resolution [20]. However, the realism of a digital twin benefits from data streams
sampled at a sufficiently high frequency. This is especially true if the models used in the
virtual replica are of the black box data driven type. These models are often based on
machine learning algorithms with neural networks, thus, requiring rich data for train-
ing [21]. Gasiyarov, V.R. et al. [22] proposed a method for defining the two-mass system
model parameters using the oscillograms obtained in the operating and emergency modes.
The method was developed for the horizontal stand drives of a 5000 mm plate mill and
is supported by numerical examples which have been applied to the development of an
observer of the elastic torque of the rolling stand’s electromechanical system. Bassi, A
et al. [23] developed a predictive model using a feed-forward neural network to determine
the hardness values and phase fraction percentages of steel during heat treatment under
specific cooling conditions. Their study enhanced the quality and performance of the
resulting product.

The digitization of the iron and steel industry also provides a new idea for the research
of plan view pattern control of plates. It is necessary to solve the problem that the traditional
mechanism model of PVPC has reached a bottleneck. Some researchers have studied the
plan view pattern control of plates by using machine learning algorithms. Zhao [24] applied
the extreme learning machine algorithm to predict the length of different sections of the
head curve of rolled pieces and optimized the intelligent prediction of the plan view pattern
of plates. Based on a large quantity of simulation data from finite element simulation,
Wang [25,26] established an intelligent prediction model of metal flow in the rolling process
with the BP neural network, which has considerable accuracy and effectiveness. However,
the data come from a large quantity of simulation results. Dong [27] developed an ISSA-
ANN (BP) plan pattern prediction model based on actual production data from the field.
An improved Sparrow search algorithm is used to optimize the initialization of weights and
biases in BP. However, the number of hidden layers and nodes in the BP neural network is
artificially set, so lacks the theoretical support of a model.

At present, there have been few studies on the application of machine learning al-
gorithms to predict the plan view patterns of plates. This is because machine learning
algorithms require a large number of data samples and the quality requirements for data
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samples are very high. Machine vision technology can effectively solve the above two
problems. At present, machine vision technology has been applied in the rolling field.
Schausberger et al. [28] proposed a way to track plates using cameras. Kim et al. [29].
proposed a plate plan view pattern measurement system based on a plan array camera and
corresponding image mosaic algorithm. Kong et al. [30] proposed a method for measuring
the lateral bending of plates using a line array camera.

At present, the image detection devices of plate production lines are normally situated
at the finishing area, which cannot provide timely feedback regarding the effect of PVPC.
Therefore, because the detection conditions of mill areas are complicated, it is necessary to
study the development of image recognition algorithms.

In this paper, according to the requirements of the digitization of plan view pattern
control, a machine vision detection device is installed near the mill area and an image
processing algorithm is developed to obtain high-quality data according to the actual
conditions of plate pattern detection image processing. A combinational optimization
machine learning algorithm is proposed for a digital model of plan view pattern control
and the digital model is applied to the actual production for verification. In the second
section, the development of machine vision detection and image processing algorithms are
introduced and the data sets of digital models are established. In the third section, a digital
model of PVPC is established by combining DBO and RBF neural network machine learning
algorithms. In the fourth section, the influence of plan view pattern control parameters on
the irregular pattern of the crop is analyzed, and the PVPC control model is established.
Also, the digital model effect is verified at the production site.

2. Plan View Pattern Detection and Actual Data Acquisition
2.1. Detection Device

In order to provide timely feedback on the plan view pattern control effect of the
rolled plate, a Gige network camera was installed at the exit of the rolling mill for image
acquisition, as shown in Figure 2. Through the LAN and Gige camera link, the plate image
data is obtained. Image recognition technology is used to obtain the edge data of the crop
pattern of the plate and the recognition results are stored in the local disk.
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Figure 2. Schema of camera installation position.

2.2. Image Processing Algorithm

A harsh rolling environment due to water vapor, dust, and light interference, will
affect the clarity of the image acquired by the measuring device, so it is necessary to use
the image processing algorithm to treat the acquired image and obtain an accurate plate
profile. In this process, an established and widely used image processing algorithm is
selected, allowing gray-scale transform, projection transform, threshold processing, contour
extraction, and the complete contour point coordinates to be obtained, as shown in Figure 3.
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image processing.

However, in the actual process of extracting contour points of plate images, due to
the different temperature of plates at different passes and the different brightness and
darkness of workshop light at different times, the values of image pixels will be affected. If
a fixed threshold is selected for threshold processing, it is impossible to segment each plate
image accurately, thus affecting the extraction of contour points. Therefore, an adaptive
threshold adjustment method for plan view pattern image detection of plates is proposed.
The algorithm flow is shown in Figure 4.
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The principle of this algorithm is to find the outline point coordinates of the plate
through the Canny edge detection algorithm, project them into the original plate image,
calculate the average pixel value of the point set, and set it as a threshold value for thresh-
old processing, so that each plate image can be automatically adjusted for binarization
processing, as shown in Figure 5.
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Figure 5. Schema of image processing algorithm.

In order to verify the detection accuracy of the algorithm, five images processed by
the algorithm are randomly selected. Five edge feature points, A, B, C, D, and E in the plate
image, are defined, as shown in Figure 6. Where A is the lower left end point of the plate, B
is the lower right end point of the plate, C is the left peak point of the plate, D is the right
peak point of the plate, and E is the valley value point of the middle region of the plate.
Taking the upper left corner of the plate image as the origin, a rectangular coordinate system
plan is established, and the internal midpoint of the five edge feature pixels corresponding
to each image is selected as the ideal edge coordinate point and compared with the five
edge feature coordinate points extracted by the above image detection algorithm. The
comparison results of the first image are shown in Table 1. The deviations of the five images
are shown in Table 2. It can be seen that the image detection algorithm is more accurate in
locating the edge of the plate, and the final accuracy can be controlled within one pixel.
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Table 1. Contrast deviation of contour point coordinates.

ID Ideal Pixel Coordinates Textual Algorithm Deviation (pi)

A1 (53, 599) (53, 599) 0
B1 (1063, 599) (1062, 599) 1
C1 (203, 377) (203, 378) 1
D1 (896, 391) (896, 391) 0
E1 (704, 399) (704, 398) 1

Average deviation: 0.6
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Table 2. Five groups of contour point deviation.

Group 1 2 3 4 5 Average Deviation

Deviation (pi) 0.6 1 1 0.4 0.8 0.76

In the actual rolling process, the crop will show irregular asymmetry, which is because
the plate in the rolling process is affected by transverse asymmetric factors, such as the
stiffness difference on both sides of the mill, the transverse temperature of the plate, and
the deviation of the center line of the plate. Therefore, in the actual collection of 101 contour
points in the head–tail deformation area, the middle point is taken as the benchmark and
the y values of the left and right symmetrical points are treated as the mean value, as shown
in Figure 7.
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The actual coordinate data of 51 contour points can be obtained by converting the pixel
coordinate system to the actual coordinate system. Match the data obtained from image
processing with the plate ID and rolling process data and summarize it into a database
for easy selection when establishing a neural network prediction model in the future. In
this paper, the data from 1150 plates are selected as the sample for the neural network
prediction model for the plan view pattern. Considering the physical model and the actual
production situation, 12 main variables were selected and combined with the head–tail
contour points of the rolled plate as the data set used, as shown in Table 3. V7, V8, V9,
and V10 are the parameters of PVPC. In the actual rolling process, the theoretical model is
simplified to a seven-point control method in order to ensure control accuracy, as shown
in Figure 8. V11 and V12 can be used as two indexes to evaluate the irregular region of
the crop pattern, as shown in Figure 9. The smaller V11 and V12 are the smaller the crop
cutting loss area of irregular deformation.
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Table 3. Parameter description of the dataset.

Index Parameter Description Unit

V1 Plt_thk The plate thickness before rolling mm
V2 Plt_wid The plate width before rolling mm
V3 Plt_len The plate length before rolling mm
V4 Tar_thk Target thickness mm
V5 Ratio_width Broadening ratio after completion of rolling -
V6 Ratio_length Extension ratio after completion of rolling -
V7 L1_b Prestroke length (PVPC parameter) mm

V8 L2_b Short stroke projection length
(PVPC parameter) mm

V9 Dh_b Dynamic reduction (PVPC parameter) mm
V10 G_b Further dynamic reduction (PVPC parameter) mm
V11 Hp Maximum height of crop pattern mm
V12 Sr Irregular area of crop pattern mm2

V13-V63 h1-h51 Y-value of plate contour points mm
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2.3. Data Preprocessing

The contour coordinate data of 1150 plates and the corresponding rolling schedule
parameters were collected from the hot rolling site as the original data. The main equipment
of the plate production line is a two stand four high mill. The main process parameters are
shown in Table 4.

Table 4. Parameter description of the stand dataset.

Items Roughing Mill Finishing Mill Unit

Maximum rolling force 50,000 40,000 kN
Work roll diameter Φ900/Φ850 Φ850/Φ800 mm

Work roll length 2800 2690 mm
Backup roll diameter Φ1800/Φ1700 Φ1600/Φ1500 mm

Backup roll length 2740 2590 mm
Rated speed of motor 0-50-120 0-60-145 rpm

Main motor power 2 × 4200 2 × 4200 kW
Rated rolling torque 2 × 1700 2 × 1470 kN·m

Slab size range (Thick × Width × Length) 150 − 260 × 1665 − 2570 × 1000 – 2700
6 − 60 × 1500 − 2500 × 6000 − 53,000

mm
Plate size range (Thick × Width × Length) mm

Machine learning has high requirements for sample quality, which requires further
sample screening. In order to make the data more real and objective, the samples with
irregular patterns and breakpoints are eliminated, and only the samples with smooth
contour coordinates of head and tail are retained. Finally, 1096 samples were selected for
subsequent machine learning modeling. In addition, different variables often have different
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data distributions, so it is necessary to normalize each feature of the sample to make each
variable have the same metric scale. In this paper, the min–max processing method [31] is
adopted to uniformly transform the data values into the interval [0,1] and normalize the
variables according to Equation (1). The sample set is then randomly shuffled and divided
into two parts: the training set (80%) and the test set (20%).

Yi = (Xi − Xmin)/(Xmax − Xmin) (1)

where, Xmin and Xmax are the minimum and maximum values in the input feature vec-
tor, respectively.

3. Establishment of Digital Model for PVPC Based on DBO-RBF
3.1. Neural Network Algorithm

An artificial neural network (ANN), also known as a neural network, is a mathemat-
ical model based on the basic principles of neural networks in biology. It simulates the
processing mechanism of the human brain’s nervous system for complex information by
understanding and abstracting the brain’s structure and external stimulus–response mech-
anism [32,33]. The theoretical basis of network topology knowledge is used. This model
has the advantages of parallel distributed processing, high fault tolerance, intelligence, and
self-learning, and combines information processing and storage together. It is actually a
complex network composed of a large number of simple elements interconnected with each
other, with high nonlinearity, and can perform complex logical operations and nonlinear
relationship implementation systems.

A radial basis function (RBF) network is a three-layer feedforward neural network
with a single hidden layer that can approximate any nonlinear function. It is one of the
most widely used and well-performing models [34]. The structure of the RBF is shown in
Figure 10.
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In the figure, X is the input feature vector, Y is the output feature value, n is the number
of hidden layer nodes, d is the center in the hidden layer, and W represents the weights
from the hidden layer to the output layer. The model consists of an input layer, a hidden
layer, and an output layer. The transformation from the input layer to the hidden layer is
nonlinear, while the transformation from the hidden layer to the output layer is linear. In
this paper, the RBF neural network selects the Gaussian function [35] as the radial basis
function in the hidden layer, as shown in Equation (2):

φ(r) = e(
−r2

2σ2 ) (2)

A strict radial basis function neural network is established using the newrbe function.
This network model is a feedforward neural network with a single-layer hidden layer,
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and the number of hidden layer neurons is equal to the number of samples (1096 hidden
layer neurons in this article). Use the input layer feature matrix of the nth sample as the
clustering center value of the nth neuron of hidden layer. The transpose matrix of the input
feature matrix is set as the weight matrix between the input layer and the hidden layer. The
structure of the newrbe function is shown in Equation (3):

net = newrbe (P, T spread) (3)

where, P is an RQ-dimensional matrix composed of Q input vectors, T is an SQ-dimensional
matrix composed of Q target classification vectors, and spread is the spread rate of the
radial basis function.

3.2. Dung Beetle Optimizer

The dung beetle optimizer (DBO) is a novel swarm optimization algorithm. The DBO
algorithm simulates the behaviors of dung beetles, including rolling, breeding, foraging,
and stealing, to form an optimization process for finding the optimal solution of a target
function. In benchmark function tests, the DBO algorithm has demonstrated better capabil-
ity in finding optimal solutions compared to other swarm intelligence algorithms [36,37].

The algorithm starts by randomly initializing the positions and fitness values of dung
beetle individuals in the search space. After each iteration, individuals of different types of dung
beetles update their positions according to their respective position update rules. The fitness
values of all individuals are compared, and the information of the current best dung beetle is
recorded. This process is repeated until the termination condition is met. Finally, the algorithm
outputs the information of the globally best dung beetle individual, obtaining the global optimal
solution and its corresponding fitness value. The algorithm flowchart is shown in Figure 11.
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In this paper, the RBF network is combined with the DBO algorithm to find the optimal
smoothing coefficient for the RBF neural network with the current samples and network
structure, in order to obtain a model with the highest accuracy and smoothness. The larger
the spread of the radial basis function, the smoother the fitted function and the stronger the
network’s generalization ability. However, a large spread means that a large number of
neurons are required to adapt to rapid changes in the function. If the spread is set too small,
it means that many neurons are needed to adapt to slow changes in the function, which can
result in poor network performance. The combination with the dung beetle optimization
algorithm can effectively solve this problem.

3.3. Establishment of the Plan Pattern Prediction Model

The structure of the RBF neural network is simpler compared to deep learning network
structures, allowing for the design of minimal structure models that meet accuracy require-
ments and making it highly applicable in industrial settings. In order to obtain a robust
prediction model for the plan pattern of plates, 10 feature variables that are relevant to the
physical model and have a significant impact on the plan pattern of plates are selected as
input variables for the plan pattern prediction model. The corresponding coordinates of
the plate’s crop pattern contour points are combined as the output variable for the plan
pattern prediction model. The model structure of RBF is shown in Figure 12.
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DBO can achieve fast convergence by gradually obtaining the optimal solution to the
problem in the entire population through the local behavior optimization of individuals.
By using DBO to optimize the spread parameter of the RBF neural network, the DBO-
RBF model has better generalization and learning abilities. It can improve the predictive
accuracy of the model. The algorithm flow of DBO-RBF is shown in Figure 13.

In order to obtain a DBO-RBF model with fast convergence speed and high compu-
tational efficiency, it is necessary to determine the appropriate range interval, population
size, and number of iterations. During the evaluation process of the RBF prediction model,
MAE (mean absolute error) and R2 (goodness of fit) can be chosen as performance metrics
for the model [38]. By evaluating these metrics, adjustments can be made to the parameters.
The equations for calculating MAE and R2 are as follows:

MAE =
1
n

(
n

∑
i=1

∣∣yi − y′
i

∣∣) (4)

R2 = 1 −
Σi(yi′ − yi)

2

Σi(yi − yi)
2 (5)
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where n is the number of samples in the dataset, yi is the actual value of the predicted
variable, yi′ is the predicted value of the established model, and yi is the mean in the sample.
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From the evaluation index Equations (4) and (5), it can be seen that the smaller the
MAE value, the higher the prediction accuracy of the model. The closer R2 is to one, the
better the descriptive power of the established prediction model on the dataset.

The hidden layer of the RBF neural network created based on Equation (2) is a single
hidden layer, and the number of neurons in the single hidden layer is equal to the number
of input samples, so there is no need to discuss the hidden layer and hidden layer neurons.
But in order to obtain the most efficient model, it is necessary to discuss the relevant
parameters of DBO. We tested the RBF with spread parameters ranging from 10 to 600 to
determine the most suitable DBO search range. The average R2 (v.R2) and average MAE
(v.MAE) of the test set with 51 output values are used as evaluation indicators, and the test
results are shown in Table 5.

Table 5. Effect of spread of RBF.

Spread v.R2 v.MAE (mm)

10 0.90322 16.7342
50 0.93588 13.5319

100 0.95656 13.0510
150 0.97780 12.8796
200 0.98236 11.3574
250 0.98227 11.3587
300 0.98105 11.5419
350 0.97553 12.5201
400 0.96725 13.0107
500 0.95689 13.1065
600 0.92725 15.0107
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From Table 5, it can be seen that the prediction performance of RBF gradually improves
with the increase of the spread parameter. However, when the spread parameter reaches
a certain level, the increase of the spread parameter will actually decrease the prediction
accuracy. Overall, the optimal spread parameter search interval for the model is between
200 and 250. After determining the search interval, it is necessary to discuss and test the
population size and iteration times. Although increasing the number of populations and
iterations can avoid the possibility of falling into a local optimal solution due to a small
population or failing to find the optimal solution due to a small number of iterations, setting
the number of populations and iterations too high may lead to slow convergence speed
and a significant increase in calculation time.

The test of the prediction model based on DBO-RBF is carried out without changing the
training set samples through the commonly used collocation method of multiple population
numbers and iteration times, so as to determine the most suitable collocation parameters.
The v.R2, v.MAE and training time of the test set with 51 output values were used as
evaluation indicators, and the results are shown in Table 6.

Table 6. Effect of population size and iterations of Plan Pattern Prediction Model.

Population Size Iterations v.R2 v.MAE (mm) Training Time (s)

30 50 0.98747 11.1523 353
30 100 0.98792 11.0967 701
50 100 0.98841 11.0396 1112
50 150 0.98955 10.8762 1537
50 200 0.98955 10.8762 2196

100 200 0.98955 10.8762 3914
100 500 0.98955 10.8762 9894

From the results in the table, it can be seen that when the population size is 50 and
the number of iterations is 150, the prediction accuracy has reached its maximum. So, the
population size of the DBO-RBF model was set to 50 and the iteration number was set to 150.

In addition, we have also obtained the optimal parameters of the BP neural network
through experiments, as shown in Table 7.

Table 7. Plan Pattern Prediction Model parameters based on BP.

Parameters Value

Number of hidden layers 2
Number of hidden neurons 25–25

learning rate 0.02
dropout ratio 0.1

hidden layer activation function sigmoid function
optimization function optimization function

loss function MSE

3.4. Establishment of the Plan Pattern Control Model

In order to establish a neural network model between the deformation area and the
plan view pattern control parameters, and adjust the plan pattern parameters to obtain the
most suitable control parameters, eight feature variables that are relevant to the physical
model and have a significant impact on the PVPC parameters are selected as input variables
for the plan pattern control model, which also combines the corresponding control data as
the output variables of the model. The model structure of the RBF network is shown in
Figure 14.
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The parameter optimization for the PVPC control model is similar to the prediction
model. The search range interval, population size, and iteration number of DBO-RBF are
determined first. The results are shown in Tables 8 and 9.

Table 8. Effect of spread parameter of RBF.

Spread v.R2 v.MAE (mm)

10 0.86945 3.9413
20 0.95163 3.2748
30 0.95572 3.2124
40 0.96637 3.1471
50 0.96866 3.1293
60 0.9692 3.0974
70 0.96875 3.1264
80 0.96774 3.1486

100 0.96025 3.1897
200 0.95689 3.2103
300 0.92725 3.4937

Table 9. Effect of population size and iterations of Plan Pattern Control Model.

Population Size Iterations v.R2 v.MAE (mm) Training Time (s)

30 50 0.96975 5.1012 141
30 100 0.96975 5.1012 274
50 100 0.97104 5.0973 409
50 150 0.97216 5.0604 613
50 200 0.97216 5.0604 837

Finally, the search range was determined to be 50–70, and the combination of popula-
tion size and iteration number was 50–100.

In addition, we have also obtained the optimal parameters of the BP neural network
through experiments, as shown in Table 10.

Table 10. Plan Pattern Control Model parameters based on BP.

Parameters Value

Number of hidden layers 2
Number of hidden neurons 20–20

learning rate 0.02
dropout ratio 0.1

hidden layer activation function sigmoid function
optimization function optimization function

loss function MSE
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4. Results and Discussion
4.1. Results of the PVPC Prediction Model

Three algorithms—BP, RBF, and DBO-RBF—were used to train the prediction model
of the plate head. The three models were trained after randomly scrambling the dataset
samples to generate the training set samples for a total of nine times. Figure 15 shows
the distribution of v.R2 in the test set of three different network models, and the median
result was selected as the stable prediction result. The results indicate that the DBO-RBF
model has the best predictive performance and generalization ability. Figure 16 shows
the R2 distribution of 51 output values for three different neural network models. From
the R2 distribution of the three models, it can be seen that the predictive performance
of the middle contour point is better than that of the edge contour point, and DBO-RBF
shows the highest predictive performance. In addition, from Table 11, it can be further seen
that the average absolute error distribution of DBO-RBF is more concentrated. From this
perspective, DBO-RBF has better predictive performance.
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Table 11. The value distribution of v.MAE in multiple training sessions.

v.MAE (mm) BP RBF DBO-RBF

≤12 mm 132 136 145
12–18 mm 65 60 55
18–24 mm 14 17 15
24–30 mm 6 5 4
>30 mm 2 1 0

After the same prediction analysis, the predictive results of the tail plan pattern
prediction model and the head model are summarized in Table 12. It shows that the
DBO-RBF has the best predictive performance. The v.R2 and v.MAE of the head section
prediction model were 0.9902 and 10.54 mm. The v.R2 and v.MAE of the tail part prediction
model were 0.9894 and 10.57 mm.

Table 12. Comparison of the different models.

Index v.R2 v.MAE (mm)

head
BP 0.95374 13.35

RBF 0.98532 11.03
DBO-RBF 0.99021 10.54

tail
BP 0.95590 12.12

RBF 0.98103 11.29
DBO-RBF 0.98949 10.57

4.2. Analysis Based on the PVPC Prediction Model

In previous studies, the influence of PVPC parameters on the irregular deformation of
the plate crop pattern was mostly explored through experiments based on physical model
calculations and finite element simulation analysis. Due to the complex coupling effect
between process parameters, it is difficult for physical models to cumulatively predict the
head and tail deformation after multiple passes of rolling. Also, finite element simulation
requires high modeling levels and parameter settings, and the calculation time is long. This
section investigates the influence of PVPC parameters on the deformation of the plate head
based on the developed neural network model. The conventional slab was selected and its
slab size and rolling schedule are shown in Table 13.

Table 13. Slab data summary.

Parameters Values

Plt_thk/mm 220
Plt_wid/mm 2065
Plt_len/mm 2447
Tar_thk/mm 11.6
Ratio_width 1.11
Ratio_length 17.14

Firstly, verify the correctness of the model. Use the target thickness (V4) as the sole
variable for prediction. The values of Hp and Sr as a function of the target thickness are
shown in Figure 17. As the target thickness decreases, the total amount of metal flowing
to the head part during the rolling process will increase, and Hp and Sr will also increase,
which is consistent with the physical phenomenon of the rolling process.
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Here we discuss the influence of PVPC parameters on the crop pattern of rolled plates,
with reference to the control method. Due to the need to consider the judgment of steel
biting signals, V7 is usually set as a fixed value, so only V8, V9, and V10 parameters are
adjusted appropriately. As shown in Figure 18, V8, V9, and V10 all have an impact on the
crop pattern. Among them, as V8 and V10 gradually increase, Hp shows a trend of first
decreasing and then increasing, while Sr shows a trend of gradually decreasing. As V9
gradually increases, Hp shows a decreasing trend, while Sr also shows a decreasing trend.
Therefore, for plates with poor head plan view patterns, it is possible to appropriately
increase the parameters of V8, V9, and V10 while meeting the equipment requirements
to reduce the deformation area at the head end. It can be seen that optimizing the PVPC
parameters can effectively reduce the deformation area of the crop pattern.
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4.3. Prediction Results of the PVPC Control Model

Three algorithms—BP, RBF, and DBO-RBF—were used to train the PVPC control
model. The three models were trained together a total of nine times after randomly
scrambling the dataset samples to generate training set samples each time. The median
result was selected as the stable prediction result. Figure 19 shows the scatter plots of the
results predicted by the different neural networks. From the graph, it can seen that the
sample results predicted by DBO-RBF are closer to the standard line. The stable prediction
results of the three neural networks are summarized in Table 14. Among them, DBO-RBF
showed the best predictive performance. The R2 and MAE of L2_b were 0.96679 and
9.0289 mm; the R2 and MAE of Dh_b were 0.97014 and 0.1294 mm; and the R2 and MAE of
G_b were 0.98642 and 0.0201 mm.
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Table 14. Results comparison of models.

Parameter Models R2 MAE (mm)

L2_b
DBO-RBF 0.96679 9.0289

RBF 0.95531 9.1007
BP 0.93514 9.2986

Dh_b
DBO-RBF 0.97014 0.1294

RBF 0.96038 0.1457
BP 0.93507 0.1601

G_b
DBO-RBF 0.98642 0.0201

RBF 0.97875 0.0217
BP 0.94113 0.0243

4.4. Data Analysis Based on PVPC Control Model

The digital control model was applied in order to verify the actual optimization
performance. A group of seven slabs with the same specifications were selected from the
same batch and the specific parameters are shown in Table 15.

Table 15. Summary table of slab data.

Items Data

material AISI-1045
Start rolling temperature/◦C 1100

Plt_thk/mm 220
Plt_wid/mm 2165
Plt_len/mm 2522
Tar_thk/mm 19
Ratio_width 1.11
Ratio_length 10.43

The seven slabs were divided into three groups as shown in Table 16. The first group
of slabs were rolled with the original PVPC parameters settings; The second group of slabs
were rolled with the PVPC parameters optimized based on experience; The third group
of slabs were rolled with optimized PVPC parameters calculated through the developed
PVPC control model. The parameters are shown in Table 16.

Table 16. PVPC parameters settings.

Optimization Method Number L2_b (mm) Dh_b (mm) G_b (mm)

Not optimized 1-1 605 6.2 0.35

Experience optimization
2-1 605 6.4 0.54
2-2 605 6.4 0.54
2-3 605 6.4 0.54

Model optimization
3-1 649.4 6.57 0.75
3-2 649.4 6.57 0.75
3-3 649.4 6.57 0.75

We collected images of the head of each rolled plate using the image acquisition device,
used the proposed image processing algorithm to extract the coordinates of irregular
contour points, and performed corresponding calculations. We also measured the two
characteristic lengths of the irregular area of the plate after crop shearing, and deviation is
within 3 mm between the measured results and image processing results. The irregular
area values of seven rolled plates are shown in Table 17.
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Table 17. The measurement results of Sr after rolling.

Group Number Sr (mm2)

1 1-1 903,271.99

2

2-1 730,173.10
2-2 749,710.71
2-3 728,490.90

Average value 736,124.90

3

3-1 624,578.69
3-2 609,294.65
3-3 642,866.66

Average value 625,580.00

The table shows the best optimization effects on the irregularly cropped areas after
rolling with the developed digital model. Figure 20 shows the control results of the irregular
areas with different control methods. The irregularly cropped areas can be reduced by 31%
with the digital control model.
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5. Conclusions

In this paper, machine vision is used as a significant tool to accurately measure the
plan view pattern data of plates. Using this dataset, a neural network-based model for
predicting the plan view pattern of plates and a control model were proposed and improved
using the dung beetle optimization algorithm. The main results of this article are as follows:

(1) An automatic threshold adjustment algorithm is proposed for image processing of
plates’ pattern photos during the rolling process. It can accurately perform binary
processing to obtain accurate edge contour point data. The error between the pattern
data calculated through machine vision technology and the measured pattern data
does not exceed 3 mm.

(2) Compared to the radial basis function model, the digital twin model proposed in this
paper has higher prediction accuracy. For the prediction of head part contour points,
the average goodness of fit increased from 0.98532 to 0.99021, and the average mean
absolute error decreased from 11.03 mm to 10.54 mm. For the prediction of tail contour
points, the average goodness of fit increased from 0.98103 to 0.98949, and the average
mean absolute error decreased from 11.29 mm to 10.57 mm. In the PVPC control model,
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for the prediction results of PVPC parameters, the DBO-RBF model delivers the best
performance. The goodness of fit of short stroke projection length, dynamic reduction,
and further dynamic reduction are 0.96679, 0.97014, and 0.98462, respectively. The mean
absolute error of short stroke projection length, dynamic reduction, and further dynamic
reduction are 9.1007 mm, 0.1294 mm, and 0.0217 mm, respectively.

(3) The developed digital PVPC control model has been applied to practical production.
Compared to traditional empirical optimization, the PVPC control model reduces the
irregularly cropped pattern by 31%.

Author Contributions: Conceptualization, Z.J. and C.H.; methodology, Z.J., S.G. and C.L.; software, S.G.
and G.L.; validation, S.G., C.L., J.L. and Z.W.(Zhiqiang Wang); formal analysis, C.L., J.L. and Z.W. (Zhiqiang
Wang); investigation, Z.Z. and Z.W. (Zhiqiang Wu); data curation, S.G. and C.L.; writing—original draft
preparation, Z.J., S.G., J.L. and Z.W. (Zhiqiang Wang); writing—review and editing, Z.J., S.G., Z.Z. and
Z.W. (Zhiqiang Wu); visualization, C.L., J.L. and Z.W. (Zhiqiang Wang); supervision, Z.J., C.H., Z.Z. and
Z.W. (Zhiqiang Wu) All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
(N160704003, N170708020, N2107007).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, G.D.; Liu, Z.Y.; Zhang, D.H.; Chu, M.S. Transformation and development of materials science and technology and

construction of iron and steel innovation infrastructure. J. Iron Steel Res. 2021, 33, 1003–1017. [CrossRef]
2. Wang, G.D. Status and prospects of research and development of key common technologies for high-quality heavy and medium

plate production. Steel Roll. 2019, 36, 1. [CrossRef]
3. Shigemori, H.; Nambu, K.; Nagao, R. Plan View Pattern Control for Steel Plates through Constrained Locally Weighted Regression.

Trans. Soc. Instrum. Control Eng. 2010, 46, 472–479. [CrossRef]
4. Yao, X.L.; Yu, X.T.; Wu, Q.H.; Liang, Q.H. The application research of plan view pattern control in plate rolling. Kybernetes 2010,

39, 1351–1358. [CrossRef]
5. Han, J. Research on theory and Strategy of PVPC during Plate Rolling Process. Master’s Thesis, Northeast University, Shenyang,

Liaoning, China, 2012. [CrossRef]
6. Deng, W.J. Research and Application of Process Control Model for Plan Pattern of Plates. Master’s Thesis, Northeast University,

Shenyang, Liaoning, China, 2013. [CrossRef]
7. Ni, K. Application of SQP Optimizing Algorithm for Plan View Pattern Control on Plate Mill. Master’s Thesis, Northeast

University, Shenyang, Liaoning, China, 2013. [CrossRef]
8. Shen, M.; Lu, C.N.; Li, L. Research and application of mathematical models for plan view pattern control of plate. Steel Roll. 2016,

33, 19–23+58.
9. Liu, L.Z. Numerical Simulation and Mathematical Modeling of Plate Rolling Process. Ph.D. Thesis, Northeast University,

Shenyang, Liaoning, China, 2022. [CrossRef]
10. Liu, H. Experimental and Simulator Study on Plate Plan View Pattern Control. Ph.D. Thesis, Northeast University: Shenyang,

Liaoning, China, 2005.
11. He, Q.S. Finite-Element Simulation of Plan View Pattern Control During Plate Rolling Process. Master’s Thesis, Northeast

University, Shenyang, Liaoning, China, 2009. [CrossRef]
12. Zhao, Y.; Yang, Q.; He, A.R.; Wang, X.C.; Zhang, Y. Precision Plate Plan View Pattern Predictive Model. J. Iron Steel Res. Int. 2011,

18, 26–30. [CrossRef]
13. Gu, S.F. Finite Element Simulation of the Vertical Roll and MAS Rolling in Plate Shape Control. Master’s Thesis, Northeast

University, Shenyang, Liaoning, China, 2014.
14. Zhang, L.W.; Gu, S.D.; He, W.B.; Chen, S.H. 3D FE modelling of plate pattern during heavy plate rolling. Ironmak. Steelmak. 2014,

41, 199–205.
15. Ruan, J.H.; Zhang, L.W.; Gu, S.D.; He, W.B.; Chen, S.H. Regression models for predicting plate plan view pattern during wide

and heavy plate rolling. Ironmak. Steelmak. 2014, 41, 656–664. [CrossRef]
16. Horie, M.; Hirata, K.; Tateno, J.; Nakata, N. Influence of Dog-Bone Width on End Profile in Plan View Pattern Control Method in

Plate Rolling. Mater. Trans. 2017, 58, 623–628. [CrossRef]
17. Ruan, J.H.; Zhang, L.W. Finite element simulation based plate edging model for plan view pattern control during wide and heavy

plate rolling. Ironmak. Steelmak. 2015, 42, 585–593. [CrossRef]

https://doi.org/10.13228/j.boyuan.issn1001-0963.20210053
https://doi.org/10.13228/j.boyuan.issn1003-9996.2018TY01
https://doi.org/10.9746/sicetr.46.472
https://doi.org/10.1108/03684921011063655
https://doi.org/10.7666/d.J0119586
https://doi.org/10.7666/d.J0123011
https://doi.org/10.7666/d.J0123790
https://doi.org/10.7666/d.Y495652
https://doi.org/10.7666/d.y1475136
https://doi.org/10.1016/S1006-706X(11)60113-1
https://doi.org/10.1179/1743281213Y.0000000159
https://doi.org/10.2320/matertrans.P-M2017805
https://doi.org/10.1179/1743281215Y.0000000002


Metals 2024, 14, 94 22 of 22

18. Jiao, Z.J.; He, C.Y.; Ding, J.G.; Wang, J.; Zhang, K.B. Industrial popularization and application of plan view pattern control
technology for plate mill. Iron Steel 2019, 54, 49–55.

19. Ding, J.G.; Wang, Q.G.; He, Y.H.C.; Kong, L.P.; Zhao, Z. Controllable Points Setting Method for Plan View Pattern Control in Plate
Rolling Process. Steel Res. Int. 2020, 91, 1900345. [CrossRef]

20. Liebenberg, M.; Jarke, M. Information Systems Engineering with Digital Shadows: Concept and Case Studies. In Advanced
Information Systems Engineering; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12127. [CrossRef]

21. De Kooning, J.D.M.; Stockman, K.; De Maeyer, J.; Jarquin-Laguna, A.; Vandevelde, L. Digital Twins for Wind Energy Conversion
Systems: A Literature Review of Potential Modelling Techniques Focused on Model Fidelity and Computational Load. Processes
2021, 9, 2224. [CrossRef]

22. Gasiyarov, V.R.; Radionov, A.A.; Loginov, B.M.; Zinchenko, M.A.; Gasiyarova, O.A.; Karandaev, A.S.; Khramshin, V.R. Method for
Defining Parameters of Electromechanical System Model as Part of Digital Twin of Rolling Mill. J. Manuf. Mater. Process. 2023, 7, 183.
[CrossRef]

23. Bassi, A.; Bodas, S.T.; Hasan, S.S.; Sidhu, G.; Srinivasan, S. Predictive Modeling of Hardness Values and Phase Fraction Percentages
in Micro-Alloyed Steel during Heat Treatment Using AI. Metals 2024, 14, 49. [CrossRef]

24. Zhao, Z. Study on Dynamic Controllable Point Setting and Intelligent Optimization Strategy for Plan View Pattern Control of
Plate. Ph.D. Thesis, Northeast University, Shenyang, Liaoning, China, 2018. [CrossRef]

25. Wang, Y.Y. Research and Application of Intelligent Prediction Model for Plan View Pattern of Plate. Master’s Thesis, Northeast
University, Shenyang, Liaoning, China, 2017. [CrossRef]

26. Wang, S.J. Study on Optimal Setting of Control Parameters for Plan View Pattern of Plate. Master’s Thesis, Northeast University,
Shenyang, Liaoning, China, 2019. [CrossRef]

27. Dong, Z.S.; Li, X.; Luan, F.; Zhang, D.H. Prediction and analysis of key parameters of head deformation of hot-rolled plates based
on artificial neural networks. J. Manuf. Process. 2022, 77, 282–300. [CrossRef]

28. Schausberger, F.; Steinboeck, A.; Kugi, A.; Jochum, M.; Wild, D. Vision-based material tracking in heavy-plate rolling. IFAC-Pap.
2016, 49, 108–113. [CrossRef]

29. Kim, M.; Lee, W.; Yao, J.; Park, P. Image stitching algorithm for camber measurement in hot rolling process: Cross-correlation
approach (ICCAS 2015). In Proceedings of the 15th International Conference on Control, Automation and Systems (ICCAS),
Busan, Republic of Korea, 13–16 October 2015; pp. 1577–1580. [CrossRef]

30. Kong, N.; Yao, J.; Lee, J.; Yun, S.W.; Bae, J.; Park, P. Vision-based camber measurement system in the endless hot rolling process.
Mater. Sci. 2011, 50, 107202. [CrossRef]

31. Gauss, J.C.F. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium; Cambridge University Press: Cambridge,
UK, 2011.

32. White, H. Learning in Artificial Neural Networks: A Statistical Perspective. Neural Comput. 1989, 1, 425–464. [CrossRef]
33. Jiménez-Come, M.J.; González Gallero, F.J.; Álvarez Gómez, P.; Mena Baladés, J.D. Corrosion Behaviour Modelling Using Artificial

Neural Networks: A Case Study in Biogas Environment. Metals 2023, 13, 1811. [CrossRef]
34. Chen, S. Recursive Hybrid Algorithm for Nonlinear System Identification using Radical Basis Function Networks. Int. J. Control

1992, 55, 1051–1070. [CrossRef]
35. Neumann, O. The Disquisitiones Arithmeticae and the Theory of Equations; Springer: Berlin/Heidelberg, Germany, 2007. [CrossRef]
36. Zhu, F.; Li, G.; Tang, H.; Li, Y.; Lv, X.; Wang, X. Dung beetle optimization algorithm based on quantum computing and

multi-strategy fusion for solving engineering problems. Expert Syst. Appl. 2024, 236, 121219. [CrossRef]
37. Zhang, R.; Zhu, Y. Predicting the Mechanical Properties of Heat-Treated Woods Using Optimization-Algorithm-Based BPNN.

Forests 2023, 14, 935. [CrossRef]
38. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Machine Learning; Springer: New York, NY, USA, 2013.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/srin.201900345
https://doi.org/10.1007/978-3-030-49435-3_5
https://doi.org/10.3390/pr9122224
https://doi.org/10.3390/jmmp7050183
https://doi.org/10.3390/met14010049
https://doi.org/10.27007/d.cnki.gdbeu.2018.000834
https://doi.org/10.27007/d.cnki.gdbeu.2017.000904
https://doi.org/10.27007/d.cnki.gdbeu.2019.000686
https://doi.org/10.1016/j.jmapro.2022.03.022
https://doi.org/10.1016/j.ifacol.2016.10.105
https://doi.org/10.1109/ICCAS.2015.7364608
https://doi.org/10.1117/1.3631856
https://doi.org/10.1162/neco.1989.1.4.425
https://doi.org/10.3390/met13111811
https://doi.org/10.1080/00207179208934272
https://doi.org/10.1007/978-3-540-34720-0_3
https://doi.org/10.1016/j.eswa.2023.121219
https://doi.org/10.3390/f14050935
https://doi.org/10.1007/978-1-4614-7138-7

	Introduction 
	Plan View Pattern Detection and Actual Data Acquisition 
	Detection Device 
	Image Processing Algorithm 
	Data Preprocessing 

	Establishment of Digital Model for PVPC Based on DBO-RBF 
	Neural Network Algorithm 
	Dung Beetle Optimizer 
	Establishment of the Plan Pattern Prediction Model 
	Establishment of the Plan Pattern Control Model 

	Results and Discussion 
	Results of the PVPC Prediction Model 
	Analysis Based on the PVPC Prediction Model 
	Prediction Results of the PVPC Control Model 
	Data Analysis Based on PVPC Control Model 

	Conclusions 
	References

