Neurometabolics in a Nutshell

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Cell Metabolism".

Deadline for manuscript submissions: closed (20 November 2025) | Viewed by 1172

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
Interests: epilepsy; rare diseases; neurometabolic disorders, leukodystrophies; neurodevelopmental disorders
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Neurometabolic disorders involve a greatly complex underlying pathophysiology, biochemical workup, and molecular analysis, and have complicated therapeutic options for management. The age of presentation can vary from infancy to adolescence, with the more severe forms appearing in early childhood accompanied by significant morbidity and mortality. Many different neurologic signs and symptoms may present emerging issues in neurometabolic disorders.

In this Special Issue  the emphasis is on the diagnostic workup of patients with suspected neurometabolic disorders and future challenges in the care for these patients.

On behalf of the Editorial Office, we invite you to contribute your research papers, review articles, and interesting case reports for peer review and possible publication.

Dr. Justyna Paprocka
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurometabolic disorders
  • rare diseases
  • diagnosis
  • differential diagnosis
  • treatment options

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 224 KB  
Article
Riboflavin Transporter Deficiency as a Cause of Progressive Encephalopathy
by Justyna Paprocka, Julia Karpierz, Michał Hutny, Jagoda Hofman-Hutna and Artur Dobosz
Metabolites 2025, 15(11), 688; https://doi.org/10.3390/metabo15110688 - 24 Oct 2025
Viewed by 914
Abstract
Background/Objective: Riboflavin transporter deficiency (RTD) is a rare neurodegenerative disease, with under 500 cases genetically confirmed since the early 2000s. Thus far, three separate subtypes of RTD2 are described—type 1, 2 and 3—but, previously, RTD was classified as two separate genetic defects: Brown–Vialetto–Van [...] Read more.
Background/Objective: Riboflavin transporter deficiency (RTD) is a rare neurodegenerative disease, with under 500 cases genetically confirmed since the early 2000s. Thus far, three separate subtypes of RTD2 are described—type 1, 2 and 3—but, previously, RTD was classified as two separate genetic defects: Brown–Vialetto–Van Laere syndrome and Fazio–Londe syndrome, caused by mutations in the SLC52A2 and SLC52A3 genes, respectively. The most prominent symptoms found in patients include encephalopathy, expressed as peripheral and cranial nerve neuropathy, which in turn lead to a series of complications: decreased muscle strength, hypotonia, visual impairment, sensorineural hearing loss, bulbar palsy, sensory ataxia and respiratory insufficiency secondary to diaphragmatic paresis. At the cellular level, riboflavin is modified into active flavin cofactors: FMN, mediating riboflavin phosphorylation through riboflavin kinase, and FAD, involved in FMN adenylation through the flavin dinucleotide 1 synthesis. FMN and FAD are two of approximately 100 proteins collectively described as the ‘flavoproteome’. Most of them are mitochondrial oxidoreductases, catalyzing the electron transport in many metabolic reactions, as well as regulating important cell processes, such as the production of reactive oxygen species, protein conformation and damage repair. FMN and FAD are also responsible for the conversion of B6 and B9 vitamins into their active forms, which allows for healthy cell growth and immune function. Methods: In this article, the authors describe two children, a 6-year-old girl and her 5-year-old sister, both presenting with RTD2 caused by mutations in the SLC52A2 gene (c.916G>C (p.Gly306Arg); c.477C>G (p.Cys159Trp)), in whom the disease progression was successfully inhibited by vitamin B2 supplementation in varying doses. Results: Their clinical image consists of psychomotor developmental delay, ataxia, horizontal nystagmus, hearing loss and a lack of visual fixation. Conclusions: The phenotype and clinical signs presented by the described sisters are further discussed in relation to the previously published reports of RTD2 cases. Full article
(This article belongs to the Special Issue Neurometabolics in a Nutshell)
Back to TopTop