The Interplay Between Inflammation and Metabolism in Disease

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Endocrinology and Clinical Metabolic Research".

Deadline for manuscript submissions: closed (31 March 2025) | Viewed by 4001

Special Issue Editor


E-Mail Website
Guest Editor
Department of Physiology, University of Granada, 18071 Granada, Spain
Interests: critically ill patients; micronutrients; vitamins; minerals; nutritional assessment; requirements; biomarkers; antioxidants; oxidative stress; inflammation; infection; supplementation; metabolism
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Many metabolic pathways of nutritional biomarkers are altered in pathological situations, whether chronic or acute.

Studying this association may provide a basis for the emergence of inflammatory and metabolic diseases, uncovering new avenues of research in the fields of metabolism, nutrition, and metabolic biomarkers.

During most conditions of stress and inflammation, changes in metabolism occur. Nutrient overload and/or lack of protection against the inflammatory response lead to impaired metabolic health.

This Special Issue aims to explore the relationship between nutritional metabolism and inflammation mediated by oxidative stress during chronic or acute illness.

Prof. Dr. Elena Planells
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • critically ill patients
  • micronutrients
  • vitamins
  • minerals
  • nutritional assessment
  • requirements
  • biomarkers
  • antioxidants
  • oxidative stress
  • inflammation
  • infection
  • supplementation
  • metabolism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2537 KiB  
Article
Leflunomide-Induced Weight Loss: Involvement of DAHPS Activity and Synthesis of Aromatic Amino Acids
by Xiaoyu Guo, Kai Wang, Hongli Chen, Na Wang, Dongmei Qiu, Haiyun Huang, Jiyu Luo, Ao Xu, Lingyun Xu, Zejun Yu, Yuanyuan Li and Hongling Zhang
Metabolites 2024, 14(11), 645; https://doi.org/10.3390/metabo14110645 - 20 Nov 2024
Cited by 1 | Viewed by 1430
Abstract
Background/Objectives: Leflunomide, an isoxazole immunosuppressant, is widely used in the treatment of diseases such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA) as well as lupus nephritis (LN). In recent years, clinical data have shown that some patients have obvious weight loss, liver [...] Read more.
Background/Objectives: Leflunomide, an isoxazole immunosuppressant, is widely used in the treatment of diseases such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA) as well as lupus nephritis (LN). In recent years, clinical data have shown that some patients have obvious weight loss, liver injury, and other serious adverse reactions after taking leflunomide. However, the causes and mechanisms by which leflunomide reduces weight are unclear. Methods: Therefore, we used a mouse animal model to administer leflunomide, and we observed that the weight of mice in the leflunomide experimental group was significantly reduced (p < 0.01). In this animal experiment, a metabolomic method was used to analyze the livers of the mice in the experimental group and found that the main difference in terms of metabolic pathways was in the metabolism of aromatic amino acids, and it was confirmed that leflunomide can inhibit the limitations of phenylalanine, tyrosine, and tryptophan biosynthesis. Results: Our study revealed that leflunomide inhibited the activity of DAHPS in the gut microbiota, disrupting the metabolism of phenylalanine, tyrosine, and tryptophan, as well as the metabolism of carbohydrates and lipids. Leflunomide also increased endoplasmic reticulum stress by activating the PERK pathway, thereby promoting CHOP expression and increasing apoptosis-induced liver damage. Conclusions: These effects may be related to the observed weight loss induced by leflunomide. Full article
(This article belongs to the Special Issue The Interplay Between Inflammation and Metabolism in Disease)
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link?
by Fatih Seğmen, Semih Aydemir, Onur Küçük and Recep Dokuyucu
Metabolites 2024, 14(11), 620; https://doi.org/10.3390/metabo14110620 - 13 Nov 2024
Cited by 2 | Viewed by 1313
Abstract
Objectives: Identifying reliable biomarkers to predict mortality in critically ill patients is crucial for optimizing management in intensive care units (ICUs). Inflammatory and metabolic markers are increasingly recognized for their prognostic value. This study aims to evaluate the association of various inflammatory and [...] Read more.
Objectives: Identifying reliable biomarkers to predict mortality in critically ill patients is crucial for optimizing management in intensive care units (ICUs). Inflammatory and metabolic markers are increasingly recognized for their prognostic value. This study aims to evaluate the association of various inflammatory and metabolic markers with ICU mortality. Methods: This prospective observational study was conducted from January 2023 to January 2024 in the City Hospital’s ICU. A total of 160 critically ill patients were enrolled. Laboratory parameters, including white blood cell (WBC) count, red cell distribution width (RDW), platelet count, neutrophil count, mean platelet volume (MPV), monocyte count, lymphocyte count, procalcitonin (PCT), C-reactive protein (CRP), calcium (Ca++), and vitamin D levels, were analyzed. Additionally, ratios such as the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), systemic inflammatory index (SII), and pan-immune-inflammation value (PIV) were calculated. Plasma levels of Gla-rich protein (GRP) and dephosphorylated uncarboxylated matrix Gla protein (dp-ucMGP) were measured using ELISA. Results: The mean age of the patients included in the study was 60.5 ± 15.8 years. Cardiovascular disease was present in 72 patients (45%), respiratory system disease in 58 (36%), and chronic kidney disease (CKD) in 38 (24%). Additionally, 61 patients (38%) had diabetes, and 68 (42%) had hypertension. Inflammatory markers, including PLR, NLR, and PIV, were all significantly higher in non-survivors, while calcium and vitamin D levels were lower (p < 0.05). Higher WBC, RDW, neutrophil count, PLR, NLR, PIV, CRP, procalcitonin, GRP, and dp-ucMGP levels were positively correlated with longer hospital stays and increased mortality. In contrast, platelet and lymphocyte counts were negatively correlated with both outcomes (p < 0.05). Vitamin D levels showed an inverse relationship with both hospital stay and mortality, indicating that lower levels were associated with worse outcomes (p < 0.05). In multiple logistic regression analysis, elevated WBC count (OR = 1.20, p = 0.02), RDW (OR = 1.35, p = 0.01), neutrophil count (OR = 1.25, p = 0.01), MPV (OR = 1.20, p = 0.02), PLR (OR = 1.30, p = 0.01), NLR (OR = 1.40, p = 0.001), PIV (OR = 1.50, p = 0.001), CRP (OR = 1.32, p = 0.01), procalcitonin (OR = 1.45, p = 0.001), GRP (OR = 1.40, p = 0.001), and dp-ucMGP (OR = 1.30, p = 0.001) levels were significantly associated with increased mortality. Conclusions: Inflammatory and metabolic markers, particularly NLR, PLR, PIV, GRP, and dp-ucMGP, are strong predictors of mortality in ICU patients. These markers provide valuable insights for risk stratification and early identification of high-risk patients, potentially guiding more targeted interventions to improve outcomes. Full article
(This article belongs to the Special Issue The Interplay Between Inflammation and Metabolism in Disease)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 920 KiB  
Review
Metabolic Syndrome and Schizophrenia: Adding a Piece to the Interplay Between the Kynurenine Pathway and Inflammation
by Jacopo Sapienza, Giulia Agostoni, Federica Repaci, Marco Spangaro, Stefano Comai and Marta Bosia
Metabolites 2025, 15(3), 176; https://doi.org/10.3390/metabo15030176 - 5 Mar 2025
Viewed by 901
Abstract
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of [...] Read more.
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of schizophrenia are neuroinflammation and alterations of neurotransmission. The kynurenine (KYN) pathway (KP) is of particular importance because it is inducted by systemic low-grade inflammation in peripheral tissues, producing metabolites that are neuroactive (i.e., modulating glutamatergic and cholinergic neurotransmission), neuroprotective, or neurotoxic. Consequently, the KP is at the crossroads between two primary systems involved in the pathogenesis of schizophrenia. It bridges the central nervous system (CNS) and the periphery, as KP metabolites can cross the blood–brain barrier and modulate neuronal activity. Metabolic syndrome plays a crucial role in this context, as it frequently co-occurs with schizophrenia, contributing to a sub-inflammatory state able to activate the KP. This narrative review provides valuable insights into these complex interactions, offering a framework for developing targeted therapeutic interventions or precision psychiatry approaches of the disorder. Full article
(This article belongs to the Special Issue The Interplay Between Inflammation and Metabolism in Disease)
Show Figures

Figure 1

Back to TopTop