Special Issue "The Role of Metal Ions in Biology, Biochemistry and Medicine"

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Biomaterials".

Deadline for manuscript submissions: 1 May 2020.

Special Issue Editor

Prof. Dr. Michael Moustakas
Website1 Website2
Guest Editor
Department of Botany, Aristotle University of Thessaloniki, Thessaloniki, Greece
Interests: photosystem II (PSII) photochemistry in biotic and abiotic stress; photoprotective and antioxidative mechanisms to biotic and abiotic stress
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Metal ions are fundamental elements for the maintenance of lifespan of plants, animals and humans. Their substantial role in biological systems was recognized a long time ago. They are essential for the maintenance of life and their absence can cause growth disorders, severe malfunction, carcinogenesis or death. They are protagonists as macro or microelements in several structural and functional roles, participating in many biochemical reactions and arise in several forms. They participate in intra and inter cellular communications, in maintaining electrical charges and osmotic pressure, in photosynthesis and electron transfer processes, in the maintenance of pairing, stacking and the stability of nucleotide bases, in regulation of DNA transcription, proper functioning of nerve cells, muscle cells, brain and heart, transport of oxygen and in many other biological processes up to the point that we cannot even imagine a life without metals. With the application of new modern methods to study biological and biochemical systems, new and sophisticated roles of metal ions in living systems can be revealed in articles in this Special Issue that aims to highlight some of the new advances.

We would like to invite experts in the field to contribute both original research papers, as well as review articles, covering basic aspects and future directions in the field.

Prof. Michael Moustakas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Metal Ions
  • Metal Deficiency and Toxicity
  • Micro-Macronutrients
  • Metal Transport
  • Metalloenzymes
  • Metallothionins
  • Metallomics
  • Metal Ions and Nucleotides
  • Metals in Health and Disease
  • Metal Homeostasis
  • Metal Hyperaccumulation
  • Metal Imaging and Sensing
  • Metal Ions and Cancer
  • Metallopharmaceuticals
  • Metallic Nanoparticles

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Comparison of Inflammatory Effects in THP-1 Monocytes and Macrophages after Exposure to Metal Ions
Materials 2020, 13(5), 1150; https://doi.org/10.3390/ma13051150 - 05 Mar 2020
Abstract
Monocytes and macrophages are the first barrier of the innate immune system, which interact with abrasion and corrosion products, leading to the release of proinflammatory mediators and free reactive molecules. The aim of this study was to understand inflammation-relevant changes in monocytes and [...] Read more.
Monocytes and macrophages are the first barrier of the innate immune system, which interact with abrasion and corrosion products, leading to the release of proinflammatory mediators and free reactive molecules. The aim of this study was to understand inflammation-relevant changes in monocytes and macrophages after exposure to corrosion products. To do this, the THP-1 cell line was used to analyze the effects of metal ions simultaneously in monocytes and differentiated macrophages. Cells were stimulated with several concentrations of metal salts (CoCl2, NiCl2, CrCl3 × 6H2O) to analyze viability, gene expression, protein release and ROS production. Untreated cells served as negative controls. While exposure to Cr(3+) did not influence cell viability in both cell types, the highest concentration (500 µM) of Co(2+) and Ni(2+) showed cytotoxic effects mirrored by significantly reduced metabolism, cell number and a concomitant increase of ROS. The release of IL-1β, IL-8, MCP-1 and M-CSF proteins was mainly affected in macrophages after metal ion exposure (100 µM), indicating a higher impact on pro-inflammatory activity. Our results prove that monocytes and macrophages react very sensitively to corrosion products. High concentrations of bivalent ions lead to cell death, while lower concentrations trigger the release of inflammatory mediators, mainly in macrophages. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Figure 1

Open AccessArticle
Spatial Heterogeneity of Cadmium Effects on Salvia sclarea Leaves Revealed by Chlorophyll Fluorescence Imaging Analysis and Laser Ablation Inductively Coupled Plasma Mass Spectrometry
Materials 2019, 12(18), 2953; https://doi.org/10.3390/ma12182953 - 12 Sep 2019
Abstract
In this study, for a first time (according to our knowledge), we couple the methodologies of chlorophyll fluorescence imaging analysis (CF-IA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to investigate the effects of cadmium (Cd) accumulation on photosystem II [...] Read more.
In this study, for a first time (according to our knowledge), we couple the methodologies of chlorophyll fluorescence imaging analysis (CF-IA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to investigate the effects of cadmium (Cd) accumulation on photosystem II (PSII) photochemistry. We used as plant material Salvia sclarea that grew hydroponically with or without (control) 100 μM Cd for five days. The spatial heterogeneity of a decreased effective quantum yield of electron transport (ΦPSΙΙ) that was observed after exposure to Cd was linked to the spatial pattern of high Cd accumulation. However, the high increase of non-photochemical quenching (NPQ), at the leaf part with the high Cd accumulation, resulted in the decrease of the quantum yield of non-regulated energy loss (ΦNO) even more than that of control leaves. Thus, S. sclarea leaves exposed to 100 μM Cd exhibited lower reactive oxygen species (ROS) production as singlet oxygen (1O2). In addition, the increased photoprotective heat dissipation (NPQ) in the whole leaf under Cd exposure was sufficient enough to retain the same fraction of open reaction centers (qp) with control leaves. Our results demonstrated that CF-IA and LA-ICP-MS could be successfully combined to monitor heavy metal effects and plant tolerance mechanisms. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Graphical abstract

Open AccessArticle
Analysis of Cellular Activity and Induction of Inflammation in Response to Short-Term Exposure to Cobalt and Chromium Ions in Mature Human Osteoblasts
Materials 2019, 12(17), 2771; https://doi.org/10.3390/ma12172771 - 28 Aug 2019
Cited by 1
Abstract
In aseptic loosening of endoprosthetic implants, metal particles, as well as their corrosion products, have been shown to elicit a biological response. Due to different metal alloy components, the response may vary depending on the nature of the released corrosion product. Our study [...] Read more.
In aseptic loosening of endoprosthetic implants, metal particles, as well as their corrosion products, have been shown to elicit a biological response. Due to different metal alloy components, the response may vary depending on the nature of the released corrosion product. Our study aimed to compare the biological effects of different ions released from metal alloys. In order to mimic the corrosion products, different metal salts (CoCl2, NiCl2 and CrCl3 × 6H2O) were dissolved and allowed to equilibrate. Human osteoblasts were incubated with concentrations of 10 µM to 500 µM metal salt solutions under cell culture conditions, whereas untreated cells served as negative controls. Cells exposed to CoCr28Mo6 particles served as positive controls. The cell activity and expression of osteogenic differentiation and pro-osteolytic mediators were determined. Osteoblastic activity revealed concentration- and material-dependent influences. Collagen 1 synthesis was reduced after treatment with Co(2+) and Ni(2+). Additionally, exposure to these ions (500 µM) resulted in significantly reduced OPG protein synthesis, whereas RANKL as well as IL-6 and IL-8 secretion were increased. TLR4 mRNA was significantly induced by Co(2+) and CoCr28Mo6 particles. The results demonstrate the pro-osteolytic capacity of metal ions in osteoblasts. Compared to CoCr28Mo6 particles, the results indicated that metal ions intervene much earlier in inflammatory processes. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana
Materials 2019, 12(15), 2498; https://doi.org/10.3390/ma12152498 - 06 Aug 2019
Cited by 1
Abstract
Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L−1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron [...] Read more.
Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L−1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). CuZn NPs effects in Arabidopsis leaves were evaluated by chlorophyll fluorescence imaging analysis that revealed spatiotemporal heterogeneity of the quantum efficiency of PSII photochemistry (ΦPSΙΙ) and the redox state of the plastoquinone (PQ) pool (qp), measured 30 min, 90 min, 180 min, and 240 min after spraying. Photosystem II (PSII) function in young leaves was observed to be negatively influenced, especially 30 min after spraying, at which point increased H2O2 generation was correlated to the lower oxidized state of the PQ pool. Recovery of young leaves photosynthetic efficiency appeared only after 240 min of NPs spray when also the level of ROS accumulation was similar to control leaves. On the contrary, a beneficial effect on PSII function in mature leaves after 30 min of the CuZn NPs spray was observed, with increased ΦPSΙΙ, an increased electron transport rate (ETR), decreased singlet oxygen (1O2) formation, and H2O2 production at the same level of control leaves.An explanation for this differential response is suggested. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Zinc Uptake, Photosynthetic Efficiency and Oxidative Stress in the Seagrass Cymodocea nodosa Exposed to ZnO Nanoparticles
Materials 2019, 12(13), 2101; https://doi.org/10.3390/ma12132101 - 29 Jun 2019
Cited by 11
Abstract
We characterized zinc oxide nanoparticles (ZnO NPs) by dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM), while we evaluated photosystem II (PSII) responses, Zn uptake kinetics, and hydrogen peroxide (H2O2) accumulation, in C. nodosa exposed to 5 [...] Read more.
We characterized zinc oxide nanoparticles (ZnO NPs) by dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM), while we evaluated photosystem II (PSII) responses, Zn uptake kinetics, and hydrogen peroxide (H2O2) accumulation, in C. nodosa exposed to 5 mg L−1 and 10 mg L−1 ZnO NPs for 4 h, 12 h, 24 h, 48 h and 72 h. Four h after exposure to 10 mg L−1 ZnO NPs, we noticed a disturbance of PSII functioning that became more severe after 12 h. However, after a 24 h exposure to 10 mg L−1 ZnO NPs, we observed a hormetic response, with both time and dose as the basal stress levels needed for induction of the adaptive response. This was achieved through the reduced plastoquinone (PQ) pool, at a 12 h exposure, which mediated the generation of chloroplastic H2O2; acting as a fast acclimation signaling molecule. Nevertheless, longer treatment (48 h and 72 h) resulted in decreasing the photoprotective mechanism to dissipate excess energy as heat (NPQ) and increasing the quantum yield of non-regulated energy loss (ΦNO). This increased the formation of singlet oxygen (1O2), and decreased the fraction of open reaction centers, mostly after a 72-h exposure at 10 mg L−1 ZnO NPs due to increased Zn uptake compared to 5 mg L−1. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Figure 1

Open AccessArticle
High Efficiency Mercury Sorption by Dead Biomass of Lysinibacillus sphaericus—New Insights into the Treatment of Contaminated Water
Materials 2019, 12(8), 1296; https://doi.org/10.3390/ma12081296 - 19 Apr 2019
Cited by 2
Abstract
Mercury (Hg) is a toxic metal frequently used in illegal and artisanal extraction of gold and silver which makes it a cause of environmental poisoning. Since biosorption of other heavy metals has been reported for several Lysinibacillus sphaericus strains, this study investigates Hg [...] Read more.
Mercury (Hg) is a toxic metal frequently used in illegal and artisanal extraction of gold and silver which makes it a cause of environmental poisoning. Since biosorption of other heavy metals has been reported for several Lysinibacillus sphaericus strains, this study investigates Hg removal. Three L. sphaericus strains previously reported as metal tolerant (CBAM5, Ot4b31, and III(3)7) were assessed with mercury chloride (HgCl2). Bacteria were characterized by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS-SEM). Sorption was evaluated in live and dead bacterial biomass by free and immobilized cells assays. Hg quantification was achieved through spectrophotometry at 508 nm by reaction of Hg supernatants with dithizone prepared in Triton X-114 and by graphite furnace atomic absorption spectroscopy (GF-AAS). Bacteria grew up to 60 ppm of HgCl2. Non-immobilized dead cell mixture of strains III(3)7 and Ot4b31 showed a maximum sorption efficiency of 28.4 µg Hg/mg bacteria during the first 5 min of contact with HgCl2, removing over 95% of Hg. This process was escalated in a semi-batch bubbling fluidized bed reactor (BFB) using rice husk as the immobilization matrix leading to a similar level of efficiency. EDS-SEM analysis showed that all strains can adsorb Hg as particles of nanometric scale that can be related to the presence of S-layer metal binding proteins as shown in previous studies. These results suggest that L. sphaericus could be used as a novel biological method of mercury removal from polluted wastewater. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Figure 1

Open AccessArticle
Chlorophyll Fluorescence Imaging Analysis for Elucidating the Mechanism of Photosystem II Acclimation to Cadmium Exposure in the Hyperaccumulating Plant Noccaea caerulescens
Materials 2018, 11(12), 2580; https://doi.org/10.3390/ma11122580 - 18 Dec 2018
Cited by 9
Abstract
We provide new data on the mechanism of Noccaea caerulescens acclimation to Cd exposure by elucidating the process of photosystem II (PSII) acclimation by chlorophyll fluorescence imaging analysis. Seeds from the metallophyte N. caerulescens were grown in hydroponic culture for 12 weeks before [...] Read more.
We provide new data on the mechanism of Noccaea caerulescens acclimation to Cd exposure by elucidating the process of photosystem II (PSII) acclimation by chlorophyll fluorescence imaging analysis. Seeds from the metallophyte N. caerulescens were grown in hydroponic culture for 12 weeks before exposure to 40 and 120 μM Cd for 3 and 4 days. At the beginning of exposure to 40 μM Cd, we observed a spatial leaf heterogeneity of decreased PSII photochemistry, that later recovered completely. This acclimation was achieved possibly through the reduced plastoquinone (PQ) pool signaling. Exposure to 120 μM Cd under the growth light did not affect PSII photochemistry, while under high light due to a photoprotective mechanism (regulated heat dissipation for protection) that down-regulated PSII quantum yield, the quantum yield of non-regulated energy loss in PSII (ΦNO) decreased even more than control values. Thus, N. caerulescens plants exposed to 120 μM Cd for 4 days exhibited lower reactive oxygen species (ROS) production as singlet oxygen (1O2). The response of N. caerulescens to Cd exposure fits the ‘Threshold for Tolerance Model’, with a lag time of 4 d and a threshold concentration of 40 μM Cd required for the induction of the acclimation mechanism. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Graphical abstract

Open AccessArticle
Photosystem II Is More Sensitive than Photosystem I to Al3+ Induced Phytotoxicity
Materials 2018, 11(9), 1772; https://doi.org/10.3390/ma11091772 - 19 Sep 2018
Cited by 9
Abstract
Aluminium (Al) the most abundant metal in the earth’s crust is toxic in acid soils (pH < 5.5) mainly in the ionic form of Al3+ species. The ability of crops to overcome Al toxicity varies among crop species and cultivars. Here, we [...] Read more.
Aluminium (Al) the most abundant metal in the earth’s crust is toxic in acid soils (pH < 5.5) mainly in the ionic form of Al3+ species. The ability of crops to overcome Al toxicity varies among crop species and cultivars. Here, we report for a first time the simultaneous responses of photosystem II (PSII) and photosystem I (PSI) to Al3+ phytotoxicity. The responses of PSII and PSI in the durum wheat (Triticum turgidum L. cv. ‘Appulo E’) and the triticale (X Triticosecale Witmark cv. ‘Dada’) were evaluated by chlorophyll fluorescence quenching analysis and reflection spectroscopy respectively, under control (−Al, pH 6.5) and 148 μM Al (+Al, pH 4.5) conditions. During control growth conditions the high activity of PSII in ‘Appulo E’ led to a rather higher electron flow to PSI, which induced a higher PSI excitation pressure in ‘Appulo E’ than in ‘Dada’ that presented a lower PSII activity. However, under 148 μM Al the triticale ‘Dada’ presented a lower PSII and PSI excitation pressure than ‘Appulo E’. In conclusion, both photosystems of ‘Dada’ displayed a superior performance than ‘Appulo E’ under Al exposure, while in both cultivars PSII was more affected than PSI from Al3+ phytotoxicity. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Fueling a Hot Debate on the Application of TiO2 Nanoparticles in Sunscreen
Materials 2019, 12(14), 2317; https://doi.org/10.3390/ma12142317 - 20 Jul 2019
Cited by 2
Abstract
Titanium is one of the most abundant elements in the earth’s crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic [...] Read more.
Titanium is one of the most abundant elements in the earth’s crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic industry, TiO2 nanoparticles are widely used. They are often incorporated in sunscreens as inorganic physical sun blockers, taking advantage of their semiconducting property, which facilitates absorbing ultraviolet (UV) radiation. Sunscreens are formulated to protect human skin from the redox activity of the TiO2 nanoparticles (NPs) and are mass-marketed as safe for people and the environment. By closely examining the biological use of TiO2 and the influence of biomolecules on its stability and solubility, we reassess the reactivity of the material in the presence and absence of UV energy. We also consider the alarming impact that TiO2 NP seepage into bodies of water can cause to the environment and aquatic life, and the effect that it can have on human skin and health, in general, especially if it penetrates into the human body and the bloodstream. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Biology, Biochemistry and Medicine)
Show Figures

Graphical abstract

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

 

Back to TopTop