materials-logo

Journal Browser

Journal Browser

Catalytic Materials and Renewable Chemistry for Energy and Fuels

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Energy Materials".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 1123

Special Issue Editors


E-Mail Website
Guest Editor
Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
Interests: homogeneous/heterogeneous catalysis; supported and multiphase catalysis; catalysis and separation technology with ionic liquids; renewable chemicals and fuels from catalytic conversion of biomass; CO2 capture and utilization
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
Interests: biopolymers; biomass conversion; bioenergy; environmental remediation; green catalysis; soild waste management
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
Interests: heterogeneous catalysis; zeolite; supported nanoparticles; biomass conversion; hydrogen utilization

Special Issue Information

Dear Colleagues,

Catalysis is a cornerstone for the green transition, enhancing the efficiency of converting renewable resources like biomass, water, and CO2 into valuable fuels and chemicals. This efficiency is crucial for scaling up green technologies and making them economically viable. Catalysis also helps reduce greenhouse gas emissions by transforming CO2 into useful products, aiding climate change mitigation. By integrating renewable energy sources such as solar and wind, catalytic processes further decrease reliance on fossil fuels. Adhering to green chemistry principles, catalysis minimizes waste and energy consumption, aligning with a circular economy, and is thus indispensable for developing sustainable energy and fuel production methods.

This Special Issue is devoted to the most recent results focused on the design and application of new catalytic materials with enhanced performance and stability for fuel and chemical synthesis from renewable biomass feedstocks and CO₂. We encourage contributions that not only advance the scientific understanding of catalytic mechanisms but also demonstrate practical applications and potential for industrial implementation.

Prof. Dr. Anders Riisager
Prof. Dr. Hu Li
Dr. Wenting Fang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • catalysis
  • materials science
  • renewable chemistry
  • biomass valorization
  • sustainable transportation fuels
  • CO2 utilization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 8753 KiB  
Article
Effect of TiO2 Coating on Structure and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Material for Lithium-Ion Batteries
by Lin Li, Zhongyu Li, Zhifan Kuang, Hao Zheng, Minjian Yang, Jianwen Liu, Shiquan Wang and Hongying Liu
Materials 2024, 17(24), 6222; https://doi.org/10.3390/ma17246222 - 19 Dec 2024
Viewed by 768
Abstract
High-nickel ternary LiNi0.6Co0.2Mn0.2O2 (NCM622) is a promising cathode material for lithium-ion batteries due to its high discharge-specific capacity and energy density. However, problems of NCM622 materials, such as unstable surface structure, lithium–nickel co-segregation, and intergranular cracking, [...] Read more.
High-nickel ternary LiNi0.6Co0.2Mn0.2O2 (NCM622) is a promising cathode material for lithium-ion batteries due to its high discharge-specific capacity and energy density. However, problems of NCM622 materials, such as unstable surface structure, lithium–nickel co-segregation, and intergranular cracking, led to a decrease in the cycling performance of the material and an inability to fully utilize high specific capacity. Surface coating was the primary approach to address these problems. The effect of TiO2 coating prepared by the sol–gel method on the performance of LiNi0.6Co0.2Mn0.2O2 was studied, mainly including the morphology, cell structure, and electrochemical properties. LiNi0.6Co0.2Mn0.2O2 was coated by TiO2 with a thickness of about 5 nm. Compared with the pristine NCM622 electrode, the electrochemical performance of the TiO2-coated NCM622 electrodes is improved. Among all TiO2-coated NCM622, the NCM622 cathode with TiO2 coating content of 0.5% demonstrates the highest capacity retention of 89.3% and a discharge capacity of 163.9 mAh g−1, in contrast to 80.9% and145 mAh g−1 for the pristine NCM622 electrode, after 100 cycles at 0.3 C between 3 and 4.3 V. The cycle life of the 5 wt% TiO2-coated NCM622 electrode is significantly improved at a high cutoff voltage of 4.6 V. The significantly enhanced cycling performance of TiO2-coated NCM622 materials could be attributed to the TiO2 coating layer that could block the contact between the material surface and the electrolyte, reducing the interface side reaction and inhibiting the transition metal dissolution. At the same time, the coating layer maintained the stability of layered structures, thus reducing the polarization phenomenon of the electrode and alleviating the irreversible capacity loss in the cycle process. Full article
(This article belongs to the Special Issue Catalytic Materials and Renewable Chemistry for Energy and Fuels)
Show Figures

Figure 1

Back to TopTop