materials-logo

Journal Browser

Journal Browser

Nanoarchitectonics in Materials Science, Second Edition

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Nanomaterials and Nanotechnology".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 4683

Special Issue Editors

Special Issue Information

Dear Colleagues,

After our successful first two volumes of the Special Issue “Nanoarchitectonics in Materials Science”, we decided to produce an additional Special Issue on this topic. Nanotechnology is now evolving and paving the way for a new kind of materials science—nanoarchitectonics. Bottom-up approaches that generate functional materials via self-assembly of constituent molecules have been developed in several research fields. These approaches are often based on simple intermolecular interactions between a limited number of constituent elements. In a departure from these conventional approaches, nanoarchitectonics goes beyond well-known self-assembly and related strategies. Rather, it aims to build material structures that contain many components and asymmetric, hierarchical motifs. Because nanoarchitectonics is such an exhaustive conceptual interdisciplinary field, it can be applied to a wide range of research areas, including hybrid/composite synthesis, structural control, sensing, catalysis, environmental remediation, energy production and storage, device formation, biology, and medicine. These topics are the subject of this Special Issue.

Prof. Dr. Katsuhiko Ariga
Prof. Dr. Rawil Fakhrullin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoarchitectonics
  • nanomaterial
  • nanocomposite
  • nanofiber
  • nanoparticle
  • nanocoating
  • nanocatalyst
  • self-assembly
  • bottom-up approach
  • hierarchical structure
  • synthesis
  • structural control
  • environmental
  • energy
  • biomedical

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

17 pages, 3668 KiB  
Article
High-Efficiency Adsorption Removal of Congo Red Dye from Water Using Magnetic NiFe2O4 Nanofibers: An Efficient Adsorbent
by Hellen C. T. Firmino, Emanuel P. Nascimento, Keila C. Costa, Luis C. C. Arzuza, Rondinele N. Araujo, Bianca V. Sousa, Gelmires A. Neves, Marco A. Morales and Romualdo R. Menezes
Materials 2025, 18(4), 754; https://doi.org/10.3390/ma18040754 - 8 Feb 2025
Cited by 1 | Viewed by 643 | Correction
Abstract
The pollution caused by organic dyes in water bodies has become a major environmental issue, and removing such pernicious dyes presents an immense challenge for the scientific community and governments. In this study, a sorbent based on nickel ferrite (NiFe2O4 [...] Read more.
The pollution caused by organic dyes in water bodies has become a major environmental issue, and removing such pernicious dyes presents an immense challenge for the scientific community and governments. In this study, a sorbent based on nickel ferrite (NiFe2O4) fibers was fabricated by the solution blow spinning (SBS) method for the adsorptive removal of anionic Cong red (CR) dye. The cubic–spinel structure and the magnetic and porous nature of NiFe2O4 were confirmed by XRD, magnetometry, BET, and SEM analyses. The saturation magnetization confirmed the magnetic nature of the fibers, which favorably respond to an external magnetic field, facilitating separation from a treated solution. The sorption kinetics of CR on NiFe2O4 were best described by the pseudo-second-order model, while sorption equilibrium agreed best with the Freundlich, Langmuir, Sips, and Temkin isotherm models, suggesting a complex mechanism involving chemisorption, monolayer coverage, and heterogeneous adsorption. The NiFe2O4 fibers annealed at 500 °C showed a high CR removal efficiency of ~97% after only 30 min. The sorbent’s porous structure and high specific surface area were responsible for the improved removal efficiency. Finally, the results indicated the potential of the NiFe2O4 fibers in the remediation of water contaminated with Congo red dye. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Figure 1

23 pages, 8608 KiB  
Article
Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions
by Xingfa Ma, Xintao Zhang, Mingjun Gao, You Wang and Guang Li
Materials 2024, 17(17), 4167; https://doi.org/10.3390/ma17174167 - 23 Aug 2024
Cited by 1 | Viewed by 1253
Abstract
The green production of nanocomposites holds great potential for the development of new materials. Graphene is an important class of carbon-based materials. Despite its high carrier mobility, it has low light absorption and is a zero-bandgap material. In order to tune the bandgap [...] Read more.
The green production of nanocomposites holds great potential for the development of new materials. Graphene is an important class of carbon-based materials. Despite its high carrier mobility, it has low light absorption and is a zero-bandgap material. In order to tune the bandgap and improve the light absorption, S, N co-doped low-dimensional C/C nanocomposites with polymer and graphene oxide nanoribbons (the graphene oxide nanoribbons were prepared by open zipping of carbon nanotubes in a previous study) were synthesized by one-pot carbonization through dimensional-interface and phase-interface tailoring of nanocomposites in this paper. The resulting C/C nanocomposites were coated on untreated A4 printing paper and the optoelectronic properties were investigated. The results showed that the S, N co-doped C/C nanoribbon/carbon dot hybrid exhibited enhanced photocurrent signals of the typical 650, 808, 980, and 1064 nm light sources and rapid interfacial charge transfer compared to the N-doped counterpart. These results can be attributed to the introduction of lone electron pairs of S, N elements, resulting in more transition energy and the defect passivation of carbon materials. In addition, the nanocomposite also exhibited some electrical switching response to the applied strain. The photophysical and doping mechanisms are discussed. This study provides a facile and green chemical approach to prepare hybrid materials with external stimuli response and multifunctionality. It provides some valuable information for the design of C/C functional nanocomposites through dimensional-interface and phase-interface tailoring and the interdisciplinary applications. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Figure 1

Review

Jump to: Research, Other

30 pages, 4653 KiB  
Review
Nanoarchitectonics of Sustainable Food Packaging: Materials, Methods, and Environmental Factors
by Tangyu Yang and Andre G. Skirtach
Materials 2025, 18(5), 1167; https://doi.org/10.3390/ma18051167 - 6 Mar 2025
Viewed by 1106
Abstract
Nanoarchitectonics influences the properties of objects at micro- and even macro-scales, aiming to develop better structures for protection of product. Although its applications were analyzed in different areas, nanoarchitectonics of food packaging—the focus of this review—has not been discussed, to the best of [...] Read more.
Nanoarchitectonics influences the properties of objects at micro- and even macro-scales, aiming to develop better structures for protection of product. Although its applications were analyzed in different areas, nanoarchitectonics of food packaging—the focus of this review—has not been discussed, to the best of our knowledge. The (A) structural and (B) functional hierarchy of food packaging is discussed here for the enhancement of protection, extending shelf-life, and preserving the nutritional quality of diverse products including meat, fish, dairy, fruits, vegetables, gelled items, and beverages. Interestingly, the structure and design of packaging for these diverse products often possess similar principles and methods including active packaging, gas permeation control, sensor incorporation, UV/pulsed light processing, and thermal/plasma treatment. Here, nanoarchitechtonics serves as the unifying component, enabling protection against oxidation, light, microbial contamination, temperature, and mechanical actions. Finally, materials are an essential consideration in food packaging, particularly beyond commonly used polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) plastics, with emphasis on biodegradable (polybutylene succinate (PBS), polyvinyl alcohol (PVA), polycaprolactone (PCL), and polybutylene adipate co-terephthalate (PBAT)) as well as green even edible (bio)-materials: polysaccharides (starch, cellulose, pectin, gum, zein, alginate, agar, galactan, ulvan, galactomannan, laccase, chitin, chitosan, hyaluronic acid, etc.). Nanoarchitechnotics design of these materials eventually determines the level of food protection as well as the sustainability of the processes. Marketing, safety, sustainability, and ethics are also discussed in the context of industrial viability and consumer satisfaction. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Graphical abstract

28 pages, 17925 KiB  
Review
Development and Applications in Intelligent Sports of Hydrogel-Based Triboelectric Nanogenerators
by Guishan Feng, Yunlu Wang, Dongsheng Liu, Zihang Cheng, Qingyang Feng, Hongwei Wang, Wei Han and Changjun Jia
Materials 2025, 18(1), 33; https://doi.org/10.3390/ma18010033 - 25 Dec 2024
Viewed by 970
Abstract
As an emerging self-powered technology, triboelectric nanogenerators have the characteristics of a simple structure, high conversion efficiency, diverse material selection, and stable output. Hydrogels have the advantages of flexibility, extensibility, and shape adaptability, which means that hydrogel-based triboelectric nanogenerators (H-TENGs) have high flexibility, [...] Read more.
As an emerging self-powered technology, triboelectric nanogenerators have the characteristics of a simple structure, high conversion efficiency, diverse material selection, and stable output. Hydrogels have the advantages of flexibility, extensibility, and shape adaptability, which means that hydrogel-based triboelectric nanogenerators (H-TENGs) have high flexibility, self-healing abilities, conductivity, and fatigue resistance. They can still operate normally in scenarios involving bending, pressing, stretching, and folding. H-TENGs offer a method of versatile and sustainable innovation in sports monitoring. This review elucidates the working principles and modes of H-TENGs, examines H-TENG characteristics that are relevant to intelligent sports, and summarizes their applications in this field. This paper concludes with a discussion on the development and applications of H-TENGs in intelligent sports. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Figure 1

Other

Jump to: Research, Review

1 pages, 129 KiB  
Correction
Correction: Firmino et al. High-Efficiency Adsorption Removal of Congo Red Dye from Water Using Magnetic NiFe2O4 Nanofibers: An Efficient Adsorbent. Materials 2025, 18, 754
by Hellen C. T. Firmino, Emanuel P. Nascimento, Keila C. Costa, Luis C. C. Arzuza, Rondinele N. Araujo, Bianca V. Sousa, Gelmires A. Neves, Marco A. Morales and Romualdo R. Menezes
Materials 2025, 18(9), 1891; https://doi.org/10.3390/ma18091891 - 22 Apr 2025
Viewed by 116
Abstract
Keila C [...] Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Back to TopTop