Topic Editors

Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1‐1, Namiki, Tsukuba 305‐0044, Japan
Equipe Chimie du Solide et Matériaux, Université de Rennes 1, 35042 Rennes, France
CNRS, ISCR UMR 6226, University of Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France

Nanoarchitectonics with Molecular and Materials Science: Materials for Energy, Environment, Bio, and Others (2nd Edition)

Abstract submission deadline
closed (31 October 2024)
Manuscript submission deadline
closed (31 December 2024)
Viewed by
11181

Topic Information

Dear Colleagues,

We are delighted to announce a submission call for the topic of “Nanoarchitectonics with Molecular and Materials Science: Materials for Energy, Environment, Bio, and Others (2nd Edition)”. This Topic is a continuation of the previously successful Topic “Nanoarchitectonics with Molecular and Materials Science: Functional Materials for Energy, Environment, Bio and Others”, which closed on 31 December 2022, and in which, 29 papers were published. Marking the post-nanotechnology era, the concept of nanoarchitectonics has been proposed to create functional materials using atoms, molecules, and nanomaterials as components (Molecules 2021, 26(6), 1621, Molecules 2021, 26(15), 4636, Nanomaterials 2021, 11(8), 2146, Int. J. Mol. Sci. 2022, 23(7), 3577, Materials 2022, 15(15), 5404). The nanoarchitectonics concept couples nanotechnology with diverse research fields, including materials science, supramolecular chemistry, and bio-related sciences to logically create functional materials from nanoscale units. In addition, given its conceptual generality, the can also be applied to other exciting research fields, including material synthesis, structural fabrications, sensing, catalysts, environmental remediation, energy production and storages, device fabrications, and biological/biomedical treatments. By including this emerging terminology, “nanoarchitectonics”, in paper titles and/or keywords, a re-consideration of these subjects can inspire the discovery of novel insights within interdisciplinary research fields.

Prof. Dr. Katsuhiko Ariga
Prof. Dr. Yann Molard
Prof. Dr. Fabien Grasset
Topic Editors

Keywords

  • nanoarchitectonics
  • supramolecular chemistry
  • functional materials
  • synthesis
  • fabrications
  • sensing
  • catalyst
  • environment
  • energy
  • biological

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
International Journal of Molecular Sciences
ijms
4.9 8.1 2000 16.8 Days CHF 2900
Journal of Functional Biomaterials
jfb
5.0 4.6 2010 16.6 Days CHF 2700
Materials
materials
3.1 5.8 2008 13.9 Days CHF 2600
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700
Nanoenergy Advances
nanoenergyadv
- - 2021 33.8 Days CHF 1000
Nanomaterials
nanomaterials
4.4 8.5 2010 14.1 Days CHF 2400

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (6 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
44 pages, 11801 KiB  
Review
Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures
by Katsuhiko Ariga
Materials 2025, 18(3), 654; https://doi.org/10.3390/ma18030654 - 1 Feb 2025
Cited by 3 | Viewed by 995
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related [...] Read more.
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol–gel materials, layered double hydroxides, metal–organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics. Full article
Show Figures

Graphical abstract

13 pages, 4333 KiB  
Article
Design and Synthesis of Phthalocyanine-Sensitized Titanium Dioxide Photocatalysts: A Dual-Pathway Study
by Qi Shao, Jiaqi Liu, Qiwang Chen, Jing Yu, Zhongbao Luo, Rongqiang Guan, Zichen Lin, Mingxuan Li, Yi Li, Cong Liu and Yan Li
Materials 2025, 18(1), 202; https://doi.org/10.3390/ma18010202 - 5 Jan 2025
Viewed by 1042
Abstract
Phthalocyanine-sensitized TiO2 significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO2 on photocatalytic performance, a dual-pathway study has [...] Read more.
Phthalocyanine-sensitized TiO2 significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO2 on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (N-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of Fe3O4@SiO2@TiO2 (FST). On the other hand, Pc was immobilized on a silane coupling agent ((3-aminopropyl) triethoxysilane) grafted onto the surface of the FST. Through photocatalytic experiments on the two types of composite materials synthesized, the results showed that the photocatalyst obtained by directly sensitizing Pc (FSTP) exhibited better performance on rhodamine B(RhB) removal than did the other photocatalyst using the silane coupling agent (FSTAP). Further mechanistic studies showed that directly sensitized FSTP exhibited more efficient photogenerated electron–hole pair separation, whereas FSTAP linked by a silane coupling agent created an additional transport distance that might greatly affect the photogenerated electron transport. Therefore, the dual-pathway research in this work provides new guidance for efficiently constructing phthalocyanine-sensitized TiO2 photocatalysts. Full article
Show Figures

Figure 1

11 pages, 5481 KiB  
Article
Rare Earth Extraction from Phosphogypsum by Aspergillus niger Culture Broth
by Jiangang Zhang, Xinyue Zhang, Xiangdong Su, Haijun Du, Yongzhong Lu and Qinglian Zhang
Molecules 2024, 29(6), 1266; https://doi.org/10.3390/molecules29061266 - 13 Mar 2024
Cited by 4 | Viewed by 1708
Abstract
The extraction of rare earth elements (REEs) from phosphogypsum (PG) is of great significance for the effective utilization of rare earth resources and enhancing the resource value of PG waste residues. This study used Aspergillus niger (A. niger) fungal culture filtrate [...] Read more.
The extraction of rare earth elements (REEs) from phosphogypsum (PG) is of great significance for the effective utilization of rare earth resources and enhancing the resource value of PG waste residues. This study used Aspergillus niger (A. niger) fungal culture filtrate as a leaching agent to investigate the behavior of extracting REEs from PG through direct and indirect contact methods. According to the ICP-MS results, direct leaching at a temperature of 30 °C, shaking speed of 150 rpm, and a solid–liquid ratio of 2:1, achieved an extraction rate of 74% for REEs, with the main elements being yttrium (Y), lanthanum (La), cerium (Ce), and neodymium (Nd). Under the same conditions, the extraction rate of REEs from phosphogypsum using an A. niger culture filtrate was 63.3% higher than that using the simulated organic acid-mixed solution prepared with the main organic acid components in the A. niger leachate. Moreover, the morphological changes observed in A. niger before and after leaching further suggest the direct involvement of A. niger’s metabolic process in the extraction of REEs. When compared to using organic acids, A. niger culture filtrate exhibits higher leaching efficiency for extracting REEs from PG. Additionally, using A. niger culture filtrate is a more environmentally friendly method with the potential for industrial-scale applications than using inorganic acids for the leaching of REEs from PG. Full article
Show Figures

Graphical abstract

17 pages, 16078 KiB  
Article
Synthesis and Performance Evaluation of a Novel High-Temperature-Resistant Thickener
by Yu Sui, Tianyue Guo, Dan Li, Da Guo, Zhiqiu Zhang and Guangsheng Cao
Molecules 2023, 28(20), 7036; https://doi.org/10.3390/molecules28207036 - 11 Oct 2023
Cited by 1 | Viewed by 1761
Abstract
Successful exploitation of carbonate reservoirs relies on the acid-fracturing process, while the thickeners used in this process play a key role. It is a common engineering problem that thickeners usually fail to function when used in high-temperature environments. Until now, no research has [...] Read more.
Successful exploitation of carbonate reservoirs relies on the acid-fracturing process, while the thickeners used in this process play a key role. It is a common engineering problem that thickeners usually fail to function when used in high-temperature environments. Until now, no research has ventured into the field of synthesizing thickeners which can be effectively used at ultra-high temperatures up to 180 °C. In our current study, a novel high-temperature-resistant polyacrylamide thickener named SYGT has been developed. The thermal gravimetric analysis (TGA) reveals that SYGT is capable of withstanding temperatures of up to 300 °C. Both our scanning electron microscopy (SEM) and rheological analysis demonstrate that the SYGT exhibits excellent resistance to both temperature and shear. At 180 °C, the viscosity of the SYGT aqueous solution is no lower than 61.7 mPa·s at a 20% H+ concentration or high salt concentration, and the fracture conductivity of the thickened acid reaches 6 D·cm. For the first time, the influence of the polymer spatial network’s structural parameters on the viscosity of polymer solutions has been evaluated quantitatively. It was discovered that the length and surrounding area of the SNS skeleton have a synergistic effect on the viscosity of the polymer solution. Our experiments show that SYGT effectively reduces the acid–rock reaction rate and filtration loss under harsh working conditions such as high temperature, strong shear, high salinity, and a high concentration of acid. The synthesized acid-fracturing thickener (SYGT) has wide application potential in the development of carbonate reservoirs under high-temperature conditions. Full article
Show Figures

Figure 1

12 pages, 2530 KiB  
Article
Selenium Nanoparticles Control H1N1 Virus by Inhibiting Inflammatory Response and Cell Apoptosis
by Jingyao Su, Jia Lai, Jiali Li, Chuqing Li, Xia Liu, Chenyang Wang, Bing Zhu and Yinghua Li
Molecules 2023, 28(15), 5920; https://doi.org/10.3390/molecules28155920 - 7 Aug 2023
Cited by 3 | Viewed by 1810
Abstract
The treatment of influenza caused by H1N1 has been the focus of much attention. Selenium nanoparticles (SeNPs) have been used in many aspects of research in the last two decades. They have shown excellent performance in antiviral, anti-inflammatory, and antioxidant functions. Previous anti-H1N1 [...] Read more.
The treatment of influenza caused by H1N1 has been the focus of much attention. Selenium nanoparticles (SeNPs) have been used in many aspects of research in the last two decades. They have shown excellent performance in antiviral, anti-inflammatory, and antioxidant functions. Previous anti-H1N1 cell experiments using SeNPs have shown that they have evident antiviral effects and low toxicities. This study focuses on the mechanism of selenium nanoparticles against an H1N1 influenza virus infection in vivo. The results showed that the selenium levels in the body decreased after an H1N1 virus infection, and inflammatory factors in the lung tissues increased abnormally, leading to the onset and aggravation of an inflammatory response. The H1N1 virus infection also led to the excessive activation of apoptotic pathways in the body and induced the apoptosis of tissue cells. In addition, this study found that SeNPs can alleviate this phenomenon. All results showed that SeNPs are promising inhibitors for controlling influenza H1N1 virus infections. Full article
Show Figures

Graphical abstract

15 pages, 47219 KiB  
Article
Nickel Nanoparticles Induced Hepatotoxicity in Mice via Lipid-Metabolism-Dysfunction-Regulated Inflammatory Injury
by Shuang Zhou, Hua Li, Hui Wang, Rui Wang, Wei Song, Da Li, Changlei Wei, Yu Guo, Xueying He and Yulin Deng
Molecules 2023, 28(15), 5757; https://doi.org/10.3390/molecules28155757 - 30 Jul 2023
Cited by 7 | Viewed by 1769
Abstract
Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles [...] Read more.
Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles and potential mechanisms of hepatic effects on NiNPs administration. In this study, we explored the liver impacts in male C57/BL6 mice through intraperitoneal injection with NiNPs at doses of 10, 20 and 40 mg/kg/day for 7 and 28 days. The results showed that NiNPs treatment increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and induced pathological changes in liver tissues. Moreover, hepatic triglyceride (TG) content and lipid droplet deposition identified via de novo lipogenesis (DNL) progression were enhanced after NiNPs injection. Additionally, sustained NiNPs exposure induced a remarkable hepatic inflammatory response, significantly promoted endoplasmic reticulum stress (ER stress) sensors Ire1α, Perk and Atf6, and activated the occurrence of liver cell apoptosis. Overall, the research indicated that NiNPs exposure induced liver injury and disturbance of lipid metabolism. These findings revealed the public hazard from extreme exposure to NiNPs and provided new information on biological toxicity and biosafety evaluation. Full article
Show Figures

Graphical abstract

Back to TopTop