Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sodium Alginate Solution
2.3. Preparation of Graphene Oxide Nanoribbons
2.4. Preparation of Low-Dimensional Carbon/Carbon Nanocomposite Derived from Polymer
2.5. Characterization via SEM, TEM, UV-Vis-NIR, XRD, EDS, and Raman Spectra
2.6. Photocurrent Signal of Low-Dimensional Carbon/Carbon Nanocomposite in the Visible Light and NIR
2.7. Examination of the Tentacle Sensitivity of the Low-Dimensional C/C Nanocomposite to the Applied Force
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, A.R.; Cao, J.C.; Zhang, C. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Phys. Rev. Lett. 2009, 103, 207401. [Google Scholar]
- Tang, H.; Menabde, S.G.; Anwar, T.; Kim, J.; Jang, M.S.; Tagliabue, G. Photomodulated optical and electrical properties of graphene. Nanophotonics 2022, 11, 917–940. [Google Scholar]
- Li, H.; Li, X.; Park, J.H.; Tao, L.; Kim, K.K.; Lee, Y.H.; Xu, J.B. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self powered high-detectivity photodetectors. Nano Energy 2019, 57, 214–221. [Google Scholar]
- Ogawa, S.; Shimatami, M.; Fukushima, S.; Okuda, S.; Kanai, Y.; Ono, T.; Matsumoto, K. Broadband photoresponse of graphene photodetector from visible to long-wavelength infrared wavelengths. Opt. Eng. 2019, 58, 57106–57112. [Google Scholar]
- Geng, H.; Yuan, D.; Yang, Z.; Tang, Z.; Zhang, X.; Yang, K.; Su, Y. Graphene van der Waals heterostructures for high-performance photodetectors. J. Mater. Chem. C Mater. 2019, 7, 11056–11067. [Google Scholar]
- Wang, J.; Mu, X.; Sun, M.; Mu, T. Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Appl. Mater. Today 2019, 16, 1–20. [Google Scholar]
- Yu, K.; Van Luan, N.; Kim, T.; Jeon, J.; Kim, J.; Moon, P.; Lee, Y.H.; Choi, E.J. Gate tunable optical absorption and band structure of twisted bilayer graphene. Phys. Rev. B 2019, 99, 241405–241411. [Google Scholar]
- Deng, T.; Zhang, Z.; Liu, Y.; Wang, Y.; Su, F.; Li, S.; Zhang, Y.; Li, H.; Chen, H.; Zhao, Z.; et al. Three-dimensional graphene field-effect transistors as high performance photodetectors. Nano Lett. 2019, 19, 1494–1503. [Google Scholar]
- Zhou, Q.; Shen, J.; Liu, X.; Li, Z.; Jiang, H.; Feng, S.; Feng, W.; Wang, Y.; Wei, D. Hybrid graphene heterojunction photodetector with high infrared responsivity through barrier tailoring. Nanotechnology 2019, 30, 195202–195209. [Google Scholar]
- Zheng, L.; Zhou, W.; Ning, Z.; Wang, G.; Cheng, X.; Hu, W.; Zhou, W.; Liu, Z.; Yang, S.; Xu, K.; et al. Ambipolar graphene–quantum dot phototransistors with CMOS compatibility. Adv. Opt. Mater. 2018, 6, 1800985–1800993. [Google Scholar]
- Grotevent, M.J.; Hail, C.U.; Yakunin, S.; Dirin, D.N.; Thodkar, K.; Barin, G.B.; Guyot-Sionnest, P.; Calame, M.; Poulikakos, D.; Kovalenko, M.V.; et al. Nanoprinted quantum dot–graphene photodetectors. Adv. Opt. Mater. 2019, 7, 1900019–1900026. [Google Scholar]
- Cao, Y.; Yang, H.; Zhao, Y.; Zhang, Y.; Ren, T.; Jin, B.; He, J.; Sun, J.L. Fully suspended reduced graphene oxide photodetector with annealing temperature-dependent broad spectral binary photoresponses. ACS Photonics 2017, 4, 2797–2806. [Google Scholar]
- Luo, C.; Xie, H.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots. J. Mater. Sci. 2019, 54, 3242–3251. [Google Scholar]
- Lundie, M.; Šljivančanin, Ž.; Tomić, S. Electronic and optical properties of reduced graphene oxide. J. Mater. Chem. C Mater. 2015, 3, 7632–7641. [Google Scholar]
- Yu, J.; Zhong, J.; Kuang, X.; Zeng, C.; Cao, L.; Liu, Y.; Liu, Z. Dynamic control of high range photoresponsivity in a graphene nanoribbon photodetector. Nanoscale Res. Lett. 2020, 15, 124–132. [Google Scholar]
- Prezzi, D.; Varsano, D.; Ruini, A.; Marini, A.; Molinari, E. Optical properties of graphene nanoribbons: The role of many-body effects. Phys. Rev. B Condens. Matter 2008, 77, 041404(R)–041407(R). [Google Scholar]
- He, M.; Dong, J.; Wang, H.; Xue, H.; Wu, Q.; Xin, B.; Gao, W.; He, X.; Yu, J.; Sun, H.; et al. Advance in close-edged graphene nanoribbon: Property investigation and structure fabrication. Small 2019, 15, 1804473–1804492. [Google Scholar]
- Soavi, G.; Conte, S.D.; Manzoni, C.; Viola, D.; Narita, A.; Hu, Y.; Feng, X.; Hohenester, U.; Molinari, E.; Prezzi, D.; et al. Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nat. Commun. 2016, 7, 11010–11016. [Google Scholar]
- Denk, R.; Hohage, M.; Zeppenfeld, P.; Cai, J.; Pignedoli, C.A.; Söde, H.; Fasel, R.; Feng, X.; Müllen, K.; Wang, S.; et al. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nat. Commun. 2014, 5, 4253–4259. [Google Scholar]
- Ostovari, F.; Moravvej-Farshi, M.K. Photodetectors with zigzag and armchair graphene nanoribbon channels and asymmetric source and drain contacts: Detectors for visible and solar blind applications. J. Appl. Phys. 2016, 120, 144505–144511. [Google Scholar]
- Alavi, S.K.; Senkovskiy, B.V.; Hertel, D.; Haberer, D.; Ando, Y.; Meerholz, K.; Fischer, F.R.; Grüneis, A.; Lindfors, K. Photodetection using atomically precise graphene nanoribbons. ACS Appl. Nano Mater. 2020, 3, 8343–8351. [Google Scholar]
- Rudi, S.G.; Soleimani-Amiri, S. Bilayer armchair graphene nanoribbon photodetector with Stone-Wales defect: A computational study. Mater. Sci. Semicond. Process. 2022, 150, 106918–106928. [Google Scholar]
- Candini, A.; Martini, L.; Chen, Z.; Mishra, N.; Convertino, D.; Coletti, C.; Narita, A.; Feng, X.; Müllen, K.; Affronte, M. High photoresponsivity in graphene nanoribbon field-effect transistor devices contacted with graphene electrodes. J. Phys. Chem. C 2017, 121, 10620–10625. [Google Scholar]
- Liu, G.; Wu, Y.; Lin, Y.M.; Farmer, D.B.; Ott, J.A.; Bruley, J.; Grill, A.; Avouris, P.; Pfeiffer, D.; Balandin, A.A.; et al. Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. ACS Nano 2012, 6, 6786–6792. [Google Scholar]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876. [Google Scholar]
- Jiao, L.Y.; Zhang, L.; Wang, X.R.; Diankov, G.; Dai, H.J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880. [Google Scholar]
- Dutta, S.; Pati, S.K. Novel properties of graphene nanoribbons: A review. J. Mater. Chem. 2010, 20, 8207–8223. [Google Scholar]
- Wang, H.; Wang, H.S.; Ma, C.; Chen, L.; Jiang, C.; Chen, C.; Xie, X.; Li, A.P.; Wang, X. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 2021, 3, 791–802. [Google Scholar]
- Son, Y.W.; Cohen, M.L.; Louie, S.G. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 2006, 97, 216803. [Google Scholar] [PubMed]
- Raza, H.; Kan, E.C. Armchair graphene nanoribbons: Electronic structure and electric-field modulation. Phys. Rev. B 2008, 77, 245434. [Google Scholar]
- Ostovari, F.; Moravvej-Farshi, M.K. Photodetectors with armchair graphene nanoribbons and asymmetric source and drain contacts. Appl. Surf. Sci. 2014, 318, 108–112. [Google Scholar]
- Zarei, M.; Sharifi, M. Defect-based graphene nanoribbon photodetectors: A numerical study. J. Appl. Phys. 2016, 119, 213104. [Google Scholar]
- Zhong, X.; Pandey, R.; Karna, S.P. Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon 2012, 50, 784–790. [Google Scholar]
- Xu, J.Y.; Yu, J.S.; Liao, J.H.; Yang, X.B.; Wu, C.Y.; Wang, Y.; Wang, L.; Xie, C.; Luo, L.B. Opening the band gap of graphene via fluorination for high-performance dual mode photodetector application. ACS Appl. Mater. Interfaces 2019, 11, 21702–21710. [Google Scholar] [PubMed]
- Park, K.H.; Song, S.H. Graphene quantum dots with blue and yellow luminescence fabricated by modulating intercalation state. Materials 2022, 15, 6567. [Google Scholar] [CrossRef] [PubMed]
- Pierrat, P.; Gaumet, J.-J. Graphene quantum dots: Emerging organic materials with remarkable and tunable luminescence features. Tetrahedron Lett. 2020, 61, 152554–152560. [Google Scholar]
- Haider, G.; Roy, P.; Chiang, C.W.; Tan, W.C.; Liou, Y.R.; Chang, H.T.; Liang, C.T.; Shih, W.H.; Chen, Y.F. Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv. Funct. Mater. 2016, 26, 620–628. [Google Scholar]
- Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Molecularly designed, nitrogen functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638. [Google Scholar] [PubMed]
- Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K.S.; Luk, C.M.; Zeng, S.; Hao, J.; et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110. [Google Scholar]
- Chiang, C.W.; Haider, G.; Tan, W.C.; Liou, Y.R.; Lai, Y.C.; Ravindranath, R.; Chang, H.T.; Chen, Y.F. Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots. ACS Appl. Mater. Interfaces 2016, 8, 466–471. [Google Scholar]
- Zhang, Q.; Jie, J.; Diao, S.; Shao, Z.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W.; Xia, H.; Yuan, X.; et al. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 2015, 9, 1561–1570. [Google Scholar]
- Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C.P.; Hao, J.; Lin, J.; Jiang, H.; Teng, K.S.; Yang, Z.; et al. Deep ultraviolet to near-infrared emission and photoresponse in layered n-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320. [Google Scholar]
- Sarkar, K.; Devi, P.; Lata, A.; Ghosh, R.; Kumar, P. Engineering carbon quantum dots for enhancing the broadband photoresponse in a silicon process-line compatible photodetector. J. Mater. Chem. C Mater. 2019, 7, 13182–13191. [Google Scholar]
- Huang, H.; Wang, F.; Liu, Y.; Wang, S.; Peng, L.M. Plasmonic enhanced performance of an infrared detector based on carbon nanotube films. ACS Appl. Mater. Interfaces 2017, 9, 12743–12749. [Google Scholar] [PubMed]
- An, Y.; Rao, H.; Bosman, G.; Ural, A. Characterization of carbon nanotube film silicon Schottky barrier photodetectors. J. Vac. Sci. Technol. 2012, 30, 21805–21810. [Google Scholar]
- Nanot, S.; Ha, E.H.; Kim, J.H.; Hauge, R.H.; Kono, J. Optoelectronic properties of single-wall carbon nanotubes. Adv. Mater. 2012, 24, 4977–4994. [Google Scholar]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615. [Google Scholar] [PubMed]
- Shiraki, T.; Miyauchi, Y.; Matsuda, K.; Nakashima, N. Carbon nanotube photoluminescence modulation by local chemical and supramolecular chemical functionalization. Acc. Chem. Res. 2020, 53, 1846–1859. [Google Scholar]
- Liu, Y.; Yin, J.; Wang, P.; Hu, Q.; Wang, Y.; Xie, Y.; Zhao, Z.; Dong, Z.; Zhu, J.L.; Chu, W.; et al. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl. Mater. Interfaces 2018, 10, 36304–36311. [Google Scholar]
- Zhang, M.; Ban, D.; Xu, C.; Yeow, J.T.W. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber. ACS Nano 2019, 13, 13285–13292. [Google Scholar]
- Bergemann, K.; Léonard, F. Room-temperature phototransistor with negative photoresponsivity of 108 A W−1 using fullerene-sensitized aligned carbon nanotubes. Small 2018, 14, 1802806–1802813. [Google Scholar]
- Qin, S.; Chen, X.; Du, Q.; Nie, Z.; Wang, X.; Lu, H.; Wang, X.; Liu, K.; Xu, Y.; Shi, Y.; et al. Sensitive and robust ultraviolet photodetector array based on self-assembled graphene/C60 hybrid films. ACS Appl. Mater. Interfaces 2018, 10, 38326–38333. [Google Scholar] [PubMed]
- Pyo, S.; Kim, W.; Jung, H.I.; Choi, J.; Kim, J. Heterogeneous integration of carbon nanotube–graphene for high-performance, flexible, and transparent photodetectors. Small 2017, 13, 1700918–1700928. [Google Scholar]
- Cai, B.; Su, Y.; Tao, Z.; Hu, J.; Zou, C.; Yang, Z.; Zhang, Y. Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv. Opt. Mater. 2018, 6, 1800791–1800798. [Google Scholar]
- Lee, E.J.H.; Zhi, L.; Burghard, M.; Mullen, K.; Kern, K. Electrical properties and photoconductivity of stacked-graphene carbon nanotubes. Adv. Mater. 2010, 22, 1854–1857. [Google Scholar] [PubMed]
- Cao, J.; Zou, Y.; Gong, X.; Gou, P.; Qian, J.; Qian, R.; An, Z. Double-layer heterostructure of graphene/carbon nanotube films for highly efficient broadband photodetector. Appl. Phys. Lett. 2018, 113, 61112–61118. [Google Scholar]
- Zhang, Y.; Deng, T.; Li, S.; Sun, J.; Yin, W.; Fang, Y.; Liu, Z. Highly sensitive ultraviolet photodetectors based on single wall carbon nanotube-graphene hybrid films. Appl. Surf. Sci. 2020, 512, 145651–145658. [Google Scholar]
- Liu, Y.; Wang, F.; Wang, X.; Wang, X.; Flahaut, E.; Liu, X.; Li, Y.; Wang, X.; Xu, Y.; Shi, Y.; et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589–8596. [Google Scholar]
- Liu, Y.; Liu, Y.; Qin, S.; Xu, Y.; Zhang, R.; Wang, F. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2017, 10, 1880–1887. [Google Scholar]
- Lu, R.; Christianson, C.; Weintrub, B.; Wu, J.Z. High photoresponse in hybrid graphene-carbon nanotube infrared detectors. ACS Appl. Mater. Interfaces 2013, 5, 11703–11707. [Google Scholar]
- Xu, W.L.; Ding, C.; Niu, M.S.; Yang, X.Y.; Zheng, F.; Xiao, J.; Zheng, M.; Hao, X.T. Reduced graphene oxide assisted charge separation and serving as transport pathways in planar perovskite photodetector. Org. Electron. 2020, 81, 105663–105668. [Google Scholar]
- Xu, W.; Guo, Y.; Zhang, X.; Zheng, L.; Zhu, T.; Zhao, D.; Hu, W.; Gong, X. Room temperature-operated ultrasensitive broadband photodetectors by perovskite incorporated with conjugated polymer and single-wall carbon nanotubes. Adv. Funct. Mater. 2018, 28, 1705541–1705551. [Google Scholar]
- Surendran, A.; Yu, X.; Begum, R.; Tao, Y.; Wang, Q.J.; Leong, W.L. All inorganic mixed halide perovskite nanocrystal-graphene hybrid photodetector: From ultrahigh gain to photostability. ACS Appl. Mater. Interfaces 2019, 11, 27064–27072. [Google Scholar]
- Chen, Z.; Kang, Z.; Rao, C.; Cheng, Y.; Liu, N.; Zhang, Z.; Li, L.; Gao, Y. Improving performance of hybrid graphene–perovskite photodetector by a scratch channel. Adv. Electron. Mater. 2019, 5, 1900168–1900175. [Google Scholar]
- Xia, K.; Wu, W.; Zhu, M.; Shen, X.; Yin, Z.; Wang, H.; Li, S.; Zhang, M.; Wang, H.; Lu, H.; et al. CVD growth of perovskite/graphene films for high performance flexible image sensor. Sci. Bull. 2020, 65, 343–349. [Google Scholar]
- Bera, K.P.; Haider, G.; Huang, Y.T.; Roy, P.K.; Inbaraj, C.R.P.; Liao, Y.M.; Lin, H.I.; Lu, C.H.; Shen, C.; Shih, W.Y.; et al. Graphene sandwich stable perovskite quantum-dot light-emissive ultrasensitive and ultrafast broadband vertical phototransistors. ACS Nano 2019, 13, 12540–12552. [Google Scholar]
- Ding, J.; Fang, H.; Lian, Z.; Lv, Q.; Sun, J.L.; Yan, Q. High-performance stretchable photodetector based on CH3NH3PbI3 microwires and graphene. Nanoscale 2018, 10, 10538–10544. [Google Scholar]
- Li, K.; Zhu, Y.; Zhang, Y.; Zhang, D.; Zhou, J.; Li, X.; Ruan, S. Built-in electric field promotes photoexcitation separation and depletion of most carriers in TiO2:C UV detectors. Nanotechnology 2019, 30, 295502–295509. [Google Scholar]
- Li, S.; Yin, W.; Li, Y.; Sun, J.; Zhu, M.; Liu, Z.; Deng, T. High sensitivity ultraviolet detection based on three-dimensional graphene field effect transistors decorated with TiO2 NPs. Nanoscale 2019, 11, 14912–14920. [Google Scholar] [PubMed]
- Sahatiya, P.; Shinde, A.; Badhulika, S. Pyro-phototronic nanogenerator based on flexible 2D ZnO/graphene heterojunction and its application in self-powered near infrared photodetector and active analog frequency modulation. Nanotechnology 2018, 29, 325205–325214. [Google Scholar] [PubMed]
- Ko, K.B.; Ryu, B.D.; Han, M.; Hong, C.H.; Dinh, D.A.; Cuong, T.V. Multidimensional graphene and ZnO-based heterostructure for flexible transparent ultraviolet photodetector. Appl. Surf. Sci. 2019, 481, 524–530. [Google Scholar]
- Cook, B.; Gong, M.; Corbin, A.; Ewing, D.; Tramble, A.; Wu, J. Inkjet-printed imbedded graphene nanoplatelet/zinc oxide bulk heterojunctions nanocomposite films for ultraviolet photodetection. ACS Omega 2019, 4, 22497–22503. [Google Scholar] [PubMed]
- Ju, D.; Liu, X.; Zhu, Z.; Wang, S.; Liu, S.; Gu, Y.; Chang, J.; Liu, Q.; Zou, Y. Solution processed membrane-based wearable ZnO/graphene Schottky UV photodetectors with imaging application. Nanotechnology 2019, 30, 375701–375709. [Google Scholar]
- Liu, H.; Gao, F.; Hu, Y.; Zhang, J.; Wang, L.; Feng, W.; Hou, J.; Hu, P. Enhanced photoresponse of monolayer MoS2 through hybridization with carbon quantum dots as efficient photosensitizer. 2D Mater. 2019, 6, 35025–35032. [Google Scholar]
- Sahatiya, P.; Jones, S.S.; Badhulika, S. 2D MoS2–carbon quantum dot hybrid based large area, flexible UV–vis–NIR photodetector on paper substrate. Appl. Mater. Today 2018, 10, 106–114. [Google Scholar]
- Nguyen, D.A.; Oh, H.M.; Duong, N.T.; Bang, S.; Yoon, S.J.; Jeong, M.S. Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen doped graphene quantum dots. ACS Appl. Mater. Interfaces 2018, 10, 10322–10329. [Google Scholar] [PubMed]
- Ghasemi, F.; Abdollahi, A.; Abnavi, A.; Mohajerzadeh, S.; Abdi, Y. Ultrahigh sensitive MoS2/rGo photodetector based on aligned CNT contacts. IEEE Electron. Device Lett. 2018, 39, 1465–1468. [Google Scholar]
- Yu, X.X.; Yin, H.; Li, H.X.; Zhao, H.; Li, C.; Zhu, M.Q. A novel high-performance self powered UV-vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation. J. Mater. Chem. C Mater. 2018, 6, 630–636. [Google Scholar]
- Liu, B.; Zhao, C.; Chen, X.; Zhang, L.; Li, Y.; Yan, H.; Zhang, Y. Self-powered and fast photodetector based on graphene/MoSe2/Au heterojunction. Superlattice. Microst. 2019, 130, 87–92. [Google Scholar]
- Kang, B.; Kim, Y.; Yoo, W.J.; Lee, C. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small 2018, 14, 1802593. [Google Scholar]
- Alamri, M.; Gong, M.; Cook, B.; Goul, R.; Wu, J.Z. Plasmonic WS2 nanodiscs/graphene van der Waals heterostructure photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 33390–33398. [Google Scholar]
- Singh, V.K.; Yadav, S.M.; Mishra, H.; Kumar, R.; Tiwari, R.S.; Pandey, A.; Srivastava, A. WS2 quantum dot graphene nanocomposite film for UV photodetection. ACS Appl. Nano Mater. 2019, 2, 3934–3942. [Google Scholar]
- Lv, Q.; Yan, F.; Wei, X.; Wang, K. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490–1700496. [Google Scholar]
- Rossi, A.; Spirito, D.; Bianco, F.; Forti, S.; Fabbri, F.; Büch, H.; Tredicucci, A.; Krahne, R.; Coletti, C. Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices. Nanoscale 2018, 10, 4332–4338. [Google Scholar]
- Wang, Z.; Zeng, P.; Hu, S.; Wu, X.; He, J.; Wu, Z.; Wang, W.; Zheng, P.; Zheng, H.; Zheng, L.; et al. Broadband photodetector based on ReS2/graphene/WSe2 heterostructure. Nanotechnology 2021, 32, 465201. [Google Scholar]
- Li, A.; Chen, Q.; Wang, P.; Gan, Y.; Qi, T.; Wang, P.; Tang, F.; Wu, J.Z.; Chen, R.; Zhang, L.; et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p–g–n junctions. Adv. Mater. 2019, 31, 1805656. [Google Scholar]
- Yu, J.-Q.; Ke, S.-S.; Lü, H.-F. Electronic properties and tunable Schottky barrier of non-Janus MoSSe/graphene heterostructures. J. Phys. D Appl. Phys. 2022, 55, 035104. [Google Scholar]
- Liu, Y.; Shivananju, B.N.; Wang, Y.; Zhang, Y.; Yu, W.; Xiao, S.; Sun, T.; Ma, W.; Mu, H.; Lin, S.; et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145. [Google Scholar]
- Xu, J.; Song, Y.J.; Park, J.H.; Lee, S. Graphene/black phosphorus heterostructured photodetector. Solid State Electron. 2018, 144, 86–89. [Google Scholar]
- Huang, P.; Riccardi, E.; Messelot, S.; Graef, H.; Valmorra, F.; Tignon, J.; Taniguchi, T.; Watanabe, K.; Dhillon, S.; Plaçais, B.; et al. Ultra-long carrier lifetime in neutral graphene-h-BN van der Waals heterostructures under mid infrared illumination. Nat. Commun. 2020, 11, 863–872. [Google Scholar] [PubMed]
- Yu, H.; Joo, P.; Lee, D.; Kim, B.S.; Oh, J.H. Photoinduced charge-carrier dynamics of phototransistors based on perylene diimide/reduced graphene oxide core/shell p-n junction nanowires. Adv. Opt. Mater. 2015, 3, 241–247. [Google Scholar]
- Bera, K.P.; Haider, G.; Usman, M.; Roy, P.K.; Lin, H.I.; Liao, Y.M.; Inbaraj, C.R.P.; Liou, Y.R.; Kataria, M.; Lu, K.L.; et al. Trapped photons induced ultrahigh external quantum efficiency and photoresponsivity in hybrid graphene/metal organic framework broadband wearable photodetectors. Adv. Funct. Mater. 2018, 28, 1804802–1804815. [Google Scholar]
- Che, Y.; Zhang, G.; Zhang, Y.; Cao, X.; Cao, M.; Yu, Y.; Dai, H.; Yao, J. Solution processed graphene phototransistor functionalized with P3HT/graphene bulk heterojunction. Opt. Commun. 2018, 425, 161–165. [Google Scholar]
- Xie, C.; Yan, F. Perovskite/poly(3-hexylthiophene)/graphene multiheterojunction phototransistors with ultrahigh gain in broadband wavelength region. ACS Appl. Mater. Interfaces 2017, 9, 1569–1576. [Google Scholar] [PubMed]
- Han, J.; Wang, J.; Yang, M.; Kong, X.; Chen, X.; Huang, Z.; Guo, H.; Gou, J.; Tao, S.; Liu, Z.; et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and Bi-directional photoresponse. Adv. Mater. 2018, 30, 1804020–1804028. [Google Scholar]
- Gong, Y.; Adhikari, P.; Liu, Q.; Wang, T.; Gong, M.; Chan, W.L.; Ching, W.Y.; Wu, J. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection. ACS Appl. Mater. Interfaces 2017, 9, 11016–11024. [Google Scholar] [PubMed]
- Pelella, A.; Grillo, A.; Faella, E.; Luongo, G.; Askari, M.B.; Di Bartolomeo, A. Graphene-Silicon device for visible and infrared photodetection. ACS Appl. Mater. Interfaces 2021, 13, 47895–47903. [Google Scholar] [PubMed]
- Ji, P.; Yang, S.; Wang, Y.; Li, K.; Wang, Y.; Suo, H.; Woldu, Y.T.; Wang, X.; Wang, F.; Zhang, L.; et al. High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction. Microsyst. Nanoeng. 2022, 8, 9–17. [Google Scholar] [PubMed]
- Sarkar, K.; Devi, P.; Lata, A.; Lokku, V.K.; Kumar, P. Surface engineered hybrid core–shell Si-nanowires for efficient and stable broadband photodetectors. Adv. Opt. Mater. 2020, 8, 2000228–2000237. [Google Scholar]
- Liu, X.; Zhou, Q.; Luo, S.; Du, H.; Cao, Z.; Peng, X.; Feng, W.; Shen, J.; Wei, D. Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction. ACS Appl. Mater. Interfaces. 2019, 11, 17663–17669. [Google Scholar]
- Chang, K.E.; Yoo, T.J.; Kim, C.; Kim, Y.J.; Lee, S.K.; Kim, S.Y.; Heo, S.; Kwon, M.G.; Lee, B.H. Gate-controlled graphene–silicon Schottky junction photodetector. Small 2018, 14, 1801182–1801189. [Google Scholar]
- Li, L.; Dong, Y.; Guo, W.; Qian, F.; Xiong, F.; Fu, Y.; Du, Z.; Xu, C.; Sun, J. High responsivity photodetectors made of graphene nanowalls grown on Si. Appl. Phys. Lett. 2019, 115, 81101–81106. [Google Scholar]
- Casalino, M.; Russo, R.; Russo, C.; Ciajolo, A.; Di Gennaro, E.; Iodice, M.; Coppola, G. Free-space Schottky graphene/silicon photodetectors operating at 2 μm. ACS Photonics 2018, 5, 4577–4585. [Google Scholar]
- Hu, M.; Yan, Y.; Huang, K.; Khan, A.; Qiu, X.; Xu, D.; Zhang, H.; Yu, X.; Yang, D. Performance improvement of graphene/silicon photodetectors using high work function metal nanoparticles with plasma effect. Adv. Opt. Mater. 2018, 6, 1701243–1701250. [Google Scholar]
- Selvi, H.; Unsuree, N.; Whittaker, E.; Halsall, M.P.; Hill, E.W.; Thomas, A.; Parkinson, P.; Echtermeyer, T.J. Towards substrate engineering of graphene silicon Schottky diode photodetectors. Nanoscale 2018, 10, 3399–3409. [Google Scholar]
- Wang, P.F.; Liu, Y.; Yin, J.; Ma, W.; Dong, Z.; Zhang, W.; Zhu, J.L.; Sun, J.L. A tunable positive and negative photoconductive photodetector based on a gold/graphene/p-type silicon heterojunction. J. Mater. Chem. C Mater. 2019, 7, 887–896. [Google Scholar]
- Tian, H.; Hu, A.; Liu, Q.; He, X.; Guo, X. Interface-induced high responsivity in hybrid graphene/GaAs photodetector. Adv. Opt. Mater. 2020, 8, 1901741–1901748. [Google Scholar]
- Wu, J.; Yang, Z.; Qiu, C.; Zhang, Y.; Wu, Z.; Yang, J.; Lu, Y.; Li, J.; Yang, D.; Hao, R.; et al. Enhanced performance of a graphene/GaAs self-driven nearinfrared photodetector with upconversion nanoparticles. Nanoscale 2018, 10, 8023–8030. [Google Scholar] [PubMed]
- Hu, A.; Tian, H.; Liu, Q.; Wang, L.; Wang, L.; He, X.; Luo, Y.; Guo, X. Graphene on self assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors. Adv. Opt. Mater. 2019, 7, 1801792–1801798. [Google Scholar]
- Tao, Z.; Zhou, D.; Yin, H.; Cai, B.; Huo, T.; Ma, J.; Di, Z.; Hu, N.; Yang, Z.; Su, Y. Graphene/GaAs heterojunction for highly sensitive, self-powered Visible/NIR photodetectors. Mater. Sci. Semicond. Process. 2020, 111, 104989–104994. [Google Scholar]
- Lu, Y.; Feng, S.; Wu, Z.; Gao, Y.; Yang, J.; Zhang, Y.; Hao, Z.; Li, J.; Li, E.; Chen, H.; et al. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity. Nano Energy 2018, 47, 140–149. [Google Scholar]
- Cao, G.; Wang, F.; Peng, M.; Shao, X.; Yang, B.; Hu, W.; Li, X.; Chen, J.; Shan, Y.; Wu, P.; et al. Multicolor broadband and fast photodetector based on InGaAs–insulator–graphene hybrid heterostructure. Adv. Electron. Mater. 2020, 6, 1901007–1901014. [Google Scholar]
- Journot, T.; Bouchiat, V.; Gayral, B.; Dijon, J.; Hyot, B. Self-assembled UV photodetector made by direct epitaxial GaN growth on graphene. ACS Appl. Mater. Interfaces 2018, 10, 18857–18862. [Google Scholar]
- Wu, J.; Qiu, C.; Feng, S.; Yao, T.; Yan, Y.; Lin, S. A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector. Nanotechnology 2020, 31, 105204–105210. [Google Scholar]
- Yang, Q.; Wu, Q.; Luo, W.; Yao, W.; Yan, S.; Shen, J. InGaAs/graphene infrared photodetectors with enhanced responsivity. Mater. Res. Express 2019, 6, 116208–116217. [Google Scholar]
- Li, J.; Zhao, F.; Nan, F.; Wang, J.; Zhang, Y.; Liang, K.; Xue, X.; Chen, T.; Kong, L.; Ge, J.; et al. Polythiophene Derivatives Carbonized Polymer Dots: Aggregation Induced Solid-State Fluorescence Emission. Chin. J. Chem. 2023, 41, 1950–1956. [Google Scholar]
- Xue, S.; Li, P.; Sun, L.; An, L.; Qu, D.; Wang, X.; Sun, Z. The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small 2023, 19, 2206180. [Google Scholar]
- Yang, S.; Zhang, Y.; Xue, Y.; Lu, S.; Yang, H.; Yang, L.; Ding, C.; Yu, S. Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS Omega 2020, 5, 8219–8229. [Google Scholar]
- Ma, X.; Gao, M.; Zhang, X.; Wang, Y.; Li, G. Polymer-Derived Carbon Nanofiber and Its Photocurrent-Switching Responses of Carbon Nanofiber/Cu Nanocomposite in Wide Ranges of Excited Light Wavelength. Polymers 2023, 15, 3528. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Gao, M.; Zhang, X.; Wang, Y.; Li, G. Interface Interaction between MoO3 and Carbon Dots Derived from Chitosan Promoted the Photocurrent Extraction Ability of Carriers in a Wide Range of the Light Spectrum. Coatings 2024, 14, 171. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Gao, M.; Wang, Y.; Li, G. Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR. Coatings 2024, 14, 981. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, J.; Ma, L.; Guo, B.; He, X.; Gao, M.; Bian, L.; Ma, X.; Li, G. Charge Behavior of Low-Dimensional V2O5/Graphene Nanoribbons Oxides Nanocomposites under Irradiation of Visible Light and its Application. Mater. Sci. Forum 2016, 847, 203–210. [Google Scholar]
- Zhang, B.; He, X.; Gao, M.; Ma, X.; Li, G. Entanglement of CeO2 Nanorods and Graphene Nanoribbons and their Properties Studies of Nanocomposites. Mater. Sci. Forum 2015, 814, 153–160. [Google Scholar]
- Ma, X.; Li, C.; Gao, M.; Zhang, X.; Wang, Y.; Li, G. Interface Optimization of Metal Quantum Dots/Polymer Nanocomposites and their Properties: Studies of Multi-Functional Organic/Inorganic Hybrid. Materials 2023, 16, 150. [Google Scholar]
Excitation Light Wavelength (nm) | Sample No. | Response Time (s) | Recovery Time (s) | Ratio of On/Off |
---|---|---|---|---|
50 mW 650 nm | 1# S, N-co-doped low-dimensional C nanoribbons/C nanocomposites | 18.00 | 51.43 | 1.35 |
50 mW 650 nm | 2# N-co-doped low-dimensional C nanoribbons/C nanocomposites | 13.71 | 34.28 | 1.11 |
200 mW 808 nm | 1# S, N-co-doped low-dimensional C nanoribbons/C nanocomposites | 8.58 | 42.85 | 1.79 |
200 mW 808 nm | 2# N-co-doped low-dimensional C nanoribbons/C nanocomposites | 25.72 | 21.43 | 1.10 |
100 mW 980 nm | 1# S, N-co-doped low-dimensional C nanoribbons/C nanocomposites | 17.14 | 30.85 | 1.25 |
100 mW 980 nm | 2# N-co-doped low-dimensional C nanoribbons/C nanocomposites | 21.43 | 80.47 | 1.07 |
20 mW 1064 nm | 1# S, N-co-doped low-dimensional C nanoribbons/C nanocomposites | 22.28 | 51.43 | 1.15 |
20 mW 1064 nm | 2# N-co-doped low-dimensional C nanoribbons/C nanocomposites | 17.14 | 26.13 | 1.09 |
Sample No. | Atomic Percent (%) | C Element | O Element | N Element | S Element | Other Elements |
1# S, N-co-doped low-dimensional C nanoribbons/C nanocomposites | 53.72 | 27.77 | 8.06 | 6.30 | Na: 0.34; Al: 0.14; Si: 0.46; Cl: 0.14; K: 0.59; Ca: 2.47 | |
2# N-co-doped low-dimensional C nanoribbons/C nanocomposites | 59.28 | 18.00 | 21.69 | 0.05 | Na: 0.07; Mg: 0.06; Al: 0.08; Si: 0.34; P: 0.05; Cl: 0.04; Ca: 0.34 | |
Sample No. | Weight Percent (%) | C Element | O Element | N Element | S Element | Other Elements |
1# S, N-co-doped low-dimensional C nanoribbons/C nanocomposites | 41.46 | 28.55 | 7.25 | 12.98 | Na: 0.50; Al: 0.24; Si: 0.83; Cl: 0.33; K: 1.48; Ca: 6.37 | |
2# N-co-doped low-dimensional C nanoribbons/C nanocomposites | 53.27 | 21.54 | 22.73 | 0.11 | Na: 0.11; Mg: 0.11; Al: 0.19; Si: 0.72; P: 0.13; Cl: 0.09; Ca: 1.01 | |
(a) | (b) | |||||
1#-S, N co-doped low-dimensional C/C nanocomposite | ||||||
(a) | (b) | |||||
2#-N-doped low-dimensional C/C nanocomposite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Zhang, X.; Gao, M.; Wang, Y.; Li, G. Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions. Materials 2024, 17, 4167. https://doi.org/10.3390/ma17174167
Ma X, Zhang X, Gao M, Wang Y, Li G. Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions. Materials. 2024; 17(17):4167. https://doi.org/10.3390/ma17174167
Chicago/Turabian StyleMa, Xingfa, Xintao Zhang, Mingjun Gao, You Wang, and Guang Li. 2024. "Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions" Materials 17, no. 17: 4167. https://doi.org/10.3390/ma17174167
APA StyleMa, X., Zhang, X., Gao, M., Wang, Y., & Li, G. (2024). Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions. Materials, 17(17), 4167. https://doi.org/10.3390/ma17174167