Surface Modification of TiO2 and ZrO2 Nanoparticles with Organic Acids and Ultrasound to Enhance Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Modification
2.3. Characterization
3. Results and Discussion
3.1. Nanoparticle Synthesis
3.1.1. Thermogravimetric Analysis (TGA)
3.1.2. Differential Scanning Calorimetry Analysis (DSC)
3.1.3. Wide-Angle X-Ray Diffraction (WAXD) Analysis
3.1.4. Fourier Transform InfraRed (FTIR) Analysis
3.1.5. X-Ray Photoelectron Spectroscopy (XPS) Analysis
3.1.6. Deconvolution O1s NPs X-Ray Photoelectron Spectroscopy (XPS) Analysis
3.2. Antimicrobial Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, V.S.W. Nanomedicine: An unresolved regulatory issue. Regul. Toxicol. Pharmacol. 2006, 46, 218–224. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Ávila-Orta, C.A.; Cabello-Alvarado, C.; Cadenas-Pliego, G.; Esparza-González, S.C.; Pérez-Alvarez, M.; Quiñones-Jurado, Z.V. Non-woven fabrics based on nanocomposite nylon 6/ZnO obtained by ultrasound-assisted extrusion for improved antimicrobial and adsorption methylene blue dye properties. Polymers 2021, 13, 1888. [Google Scholar] [CrossRef]
- Garza-Alonso, C.A.; Juárez-Maldonado, A.; González-Morales, S.; Cabrera-De la Fuente, M.; Cadenas-Pliego, G.; Morales-Díaz, A.B.; Trejo-Téllez, L.I.; Tortella, G.; Benavides-Mendoza, A. ZnO nanoparticles as potential fertilizer and biostimulant for lettuce. Heliyon 2023, 9, e12787. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Hou, Q.; Su, Y.; Li, Q.; Liu, L.; Jing, J.; Lin, B.; Chen, Y. g-C3N4/TiO2 hybrid film on the metal surface, a cheap and efficient sunlight active photoelectrochemical anticorrosion coating. J. Mater. Sci. Mater. Electron. 2019, 30, 12710–12717. [Google Scholar] [CrossRef]
- Villarreal, I.; Rosas-Laverde, N.; Guerrero, V.H. Síntesis de Nanopartículas de Óxido de Zirconio. Revista Politécnica [en linea] 2017, 38. Available online: https://www.redalyc.org/articulo.oa?id=688773642002 (accessed on 6 June 2025).
- Nouri, E.; Shahmiri, M.; Rezaie, H.R.; Talayian, F. Investigation of structural evolution and electrochemical behaviour of zirconia thin films on the 316L stainless steel substrate formed via sol-gel process. Surf. Coat. Technol. 2011, 205, 5109–5115. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Kim, K.S. Functionalization of magnetic nanoparticles for biomedical applications. Korean J. Chem. Eng. 2014, 31, 1289–1305. [Google Scholar] [CrossRef]
- Upadhyay, K.; Tamrakar, R.K.; Thomas, S.; Kumar, M. Surface functionalized nanoparticles: A boon to biomedical science. Chem. Biol. Interact. 2023, 380, 110537. [Google Scholar] [CrossRef] [PubMed]
- Mallik, A.K.; Moktadir, M.A.; Rahman, M.A.; Shahruzzaman, M.; Rahman, M.M. Progress in surface-modified silicas for Cr(VI) adsorption: A review. J. Hazard. Mater. 2022, 423, 127041. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kandasamy, G.; Upadhyay, R.K.; Bhattacharya, G.; Banerjee, D.; Maity, D.; Deshusses, M.A.; Roy, S.S. Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 2017, 788, 91–98. [Google Scholar] [CrossRef]
- Hu, F.; Liu, W.; Xie, Z. Surface modification of alumina powder particles through stearic acid for the fabrication of translucent alumina ceramics by injection molding. Ceram. Int. 2016, 42, 16274–16280. [Google Scholar] [CrossRef]
- Chimeno-Trinchet, C.; Fernández-González, A.; García Calzón, J.Á.; Díaz-García, M.E.; Badía Laíño, R. Alkyl-capped copper oxide nanospheres and nanoprolates for sustainability: Water treatment and improved lubricating performance. Sci. Technol. Adv. Mater. 2019, 20, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Liu, Q.; Yuan, S.; Yang, X.; Yang, C.; Li, J.; Liu, L.; Peng, L.; He, J. Facile fabrication of TiO2-functionalized material with tunable superwettability for continuous and controllable oil/water separation, emulsified oil purification, and hazardous organics photodegradation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125942. [Google Scholar] [CrossRef]
- Wanna, Y.; Chindaduang, A.; Tumcharern, G.; Phromyothin, D.; Porntheerapat, S.; Nukeaw, J.; Hofmann, H.; Pratontep, S. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal. J. Magn. Magn. Mater. 2016, 414, 32–37. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, Z.; Zhang, W.; Gao, Q.; Dai, Y.; Xia, F.; Zhang, X. EDTA-based adsorbents for the removal of metal ions in wastewater. Coord. Chem. Rev. 2021, 434, 213809. [Google Scholar] [CrossRef]
- Hui, C.; Shen, C.; Yang, T.; Bao, L.; Tian, J.; Ding, H.; Li, C.; Gao, H.-J. Large-Scale Fe3O4 Nanoparticles Soluble in Water Synthesized by a Facile Method. J. Phys. Chem. 2008, 112, 11336–11339. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wen, S.; Li, H.; Xie, C.; Li, S.; Mei, D. Preparation, characterization, and energy simulation of ZnTiO3 high near-infrared reflection pigment and its anti-graffiti coating. RSC Adv. 2023, 13, 6065–6074. [Google Scholar] [CrossRef]
- Mirzadeh, M.; Dehghani, K.; Rezaei, M.; Mahidashti, Z. Effect of stearic acid as a low cost and green material on the self-cleaning and anti-corrosion behavior of anodized titanium. Colloids Surf. Physicochem. Eng. Asp. 2019, 583, 123971. [Google Scholar] [CrossRef]
- Milionis, A.; Tripathy, A.; Donati, M.; Sharma, C.S.; Pan, F.; Maniura-Weber, K.; Ren, Q.; Poulikakos, D. Water-Based Scalable Methods for Self-Cleaning Antibacterial ZnO-Nanostructured Surfaces. Ind. Eng. Chem. Res. 2020, 59, 14323–14333. [Google Scholar] [CrossRef]
- Ivanova, E.P.; Nguyen, S.H.; Guo, Y.; Baulin, V.A.; Webb, H.K.; Truong, V.K.; Wandiyanto, J.V.; Garvey, C.J.; Mahon, P.J.; Mainwaring, D.E.; et al. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite. Acta Biomater. 2017, 59, 148–157. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Rohit, M.; Chiranjeevi, P.; Chandra, R.; Navaneeth, B. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: Progress and perspectives. Bioresour. Technol. 2015, 184, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat. Anti Infect. Drug Discov. 2012, 7, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.-J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef]
- Kumar, P.; Lee, J.; Beyenal, H.; Lee, J. Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol. 2020, 28, 753–768. [Google Scholar] [CrossRef]
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef]
- Pamela, V.Y.; Meindrawan, B.; Syarief, R.; Iriani, E.S.; Suyatma, N.E. Barrier and antimicrobial properties of PVA films incorporated with ZnO nanoparticles and stearic acid. IOP Conf. Ser. Earth Environ. Sci. 2018, 195, 012060. [Google Scholar] [CrossRef]
- Suyatma, N.E.; Gunawan, S.; Putri, R.Y.; Tara, A.; Abbès, F.; Hastati, D.Y.; Abbès, B. Active Biohybrid Nanocomposite Films Made from Chitosan, ZnO Nanoparticles, and Stearic Acid: Optimization Study to Develop Antibacterial Films for Food Packaging Application. Materials 2023, 16, 926. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Manuel, I.; Pérez-Alvarez, M.; Cadenas-Pliego, G.; Cabello-Alvarado, C.J.; Tellez-Barrios, G.; Ávila-Orta, C.A.; Ledezma-Pérez, A.S.; Andrade-Guel, M.; Bartolo-Pérez, P. Sonochemical Functionalization of SiO2 Nanoparticles with Citric Acid and Monoethanolamine and Its Remarkable Effect on Antibacterial Activity. Materials 2025, 18, 439. [Google Scholar] [CrossRef]
- Siddique, M.N.; Ahmed, A.; Tripathi, P. Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. Alloys Compd. 2018, 735, 516–529. [Google Scholar] [CrossRef]
- ASTM E 2149-01; Standardtest Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions. American Society for Testing & Materials: West Conshohocken, PA, USA, 2001.
- Li, W.; Zhang, C.; Chi, H.; Li, L.; Lan, T.; Han, P.; Chen, H.; Qin, Y. Development of Antimicrobial Packaging Film Made from Poly(Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules 2017, 22, 1170. [Google Scholar] [CrossRef]
- Niu, S.; Yu, H.; Zhao, S.; Zhang, X.; Li, X.; Han, K.; Lu, C.; Wang, Y. Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis. Renew. Energy 2019, 133, 373–381. [Google Scholar] [CrossRef]
- Hu, F.Q.; Jiang, S.P.; Du, Y.Z.; Yuan, H.; Ye, Y.Q.; Zeng, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf. Biointerfaces 2005, 45, 167–173. [Google Scholar] [CrossRef]
- Kelidari, H.R.; Saeedi, M.; Akbari, J.; Morteza-Semnani, K.; Gill, P.; Valizadeh, H.; Nokhodchi, A. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf. Biointerfaces 2015, 128, 473–479. [Google Scholar] [CrossRef]
- Gutierrez-Sanchez, C.D.; Dorantes-Rosales, H.; Balmori-Ramírez, H.; Téllez-Jurado, L. Phase transformation kinetics of zirconia nanoparticles: Comparative study of acidic or basic medium in sol-gel synthesis. Ceram. Int. 2025; in press. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Wan, H.; Chen, J.; Zhou, H. Synthesis and tribological properties of stearic acid-modified anatase (TiO2) nanoparticles. Tribol. Lett. 2011, 41, 409–416. [Google Scholar] [CrossRef]
- Lee, C.H.; Rhee, S.W.; Choi, H.W. Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells. Nanoscale Res. Lett. 2012, 7, 48. [Google Scholar] [CrossRef]
- Xie, B.; Li, C.; Chen, J.; Wang, N. Exfoliated 2D hexagonal boron nitride nanosheet stabilized stearic acid as composite phase change materials for thermal energy storage. Sol. Energy 2020, 204, 624–634. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Seherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Ohira, T.; Yamamoto, O. Correlation between antibacterial activity and crystallite size on ceramics. Chem. Eng. Sci. 2012, 68, 355–361. [Google Scholar] [CrossRef]
- Ershov, V.A.; Ershov, B.G. Effect of Silver Nanoparticle Size on Antibacterial Activity. Toxics 2024, 12, 801. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, H.; Shen, Y.; Zhang, W.; Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio natriegens. PLoS ONE 2019, 14, e0222322. [Google Scholar] [CrossRef] [PubMed]
- Revathi, G.; Sangari, N.U.; Keerthana, C. Influence of surface texture: A comparative study on antibacterial activities of morphologically tailored zinc oxide. Biochem. Biophys. Res. Commun. 2024, 734, 150612. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Hedberg, J.; Blomberg, E.; Wold, S.; Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanoparticle Res. 2016, 18, 285. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.C.; Dao, P.H.; Vu, Q.T.; Nguyen, A.H.; Nguyen, X.T.; Ly, T.N.L.; Tran, T.K.N.; Thai, H. Assessment of characteristics and weather stability of acrylic coating containing surface modified zirconia nanoparticles. Prog. Org. Coat. 2022, 163, 106675. [Google Scholar] [CrossRef]
- Hu, G.; Miao, L.; Gao, Y.; Shao, S.; Li, L.; Zhang, R.; Liu, S.; Guo, Y.; Yang, Y.; Wang, Y. Estimating the weathering time of the final instar exuviae of Dermestes frischii by ATR-FTIR spectroscopy and GC–MS analysis. Microchem. J. 2024, 206, 111484. [Google Scholar] [CrossRef]
- Kumar, S.; Randhawa, J.K. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSC Adv. 2015, 5, 68743–68750. [Google Scholar] [CrossRef]
- Reddy, B.M.; Sreekanth, P.M.; Yamada, Y.; Xu, Q.; Kobayashi, T. Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques. Appl. Catal. A Gen. 2002, 228, 269–278. [Google Scholar] [CrossRef]
- Bae, J.-h.; Do, S.-b.; Cho, S.-h.; Lee, K.-m.; Lee, S.-E.; Kim, T.-O. TiO2 treatment using ultrasonication for bubble cavitation generation and efficiency assessment of a dye-sensitized solar cell. Ultrason. Sonochemistry 2022, 83, 105933. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Q.; Lv, L.; Wang, Y.; Hu, Y.; Deng, Z.; Lou, Z.; Hou, Y.; Teng, F. Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Adv. 2017, 7, 20084–20092. [Google Scholar] [CrossRef]
- Liu, J.; Liao, M.; Imura, M.; Tanaka, A.; Iwai, H.; Koide, Y. Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric. Sci. Rep. 2014, 4, 6395. [Google Scholar] [CrossRef]
- Luo, Y.B.; Wang, X.L.; Xu, D.Y.; Wang, Y.Z. Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Appl. Surf. Sci. 2009, 255, 6795–6801. [Google Scholar] [CrossRef]
- Sun, M.F.; Wang, T.; Wu, L.G.; Wang, Y.X. Enhancing the permeation and antifouling performance of PVDF hybrid membranes by incorporating Co–Fe hydroxide nanoparticles in reverse microemulsion. J. Environ. Chem. Eng. 2021, 9, 106556. [Google Scholar] [CrossRef]
- Calabrese, C.; la Parola, V.; Testa, M.L.; Liotta, L.F. Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania. Inorganica Chim. Acta 2022, 529, 120636. [Google Scholar] [CrossRef]
- Wen, S.; Wang, P.; Wang, L. Preparation and antifouling performance evaluation of fluorine-containing amphiphilic silica nanoparticles. Colloids Surf. Physicochem. Eng. Asp. 2021, 611, 125823. [Google Scholar] [CrossRef]
- Wang, J.; Liang, M.F.; Pan, Y.; Sun, S.; Shen, T.; Wei, X.; Zhu, Y.; Liu, J.; Huang, Q. Control of surface composition and microstructure of nano super-hydrophilic TiO2-CuOy coatings through reactive sputtering to improve antibacterial ability, corrosion resistance, and biocompatibility. Appl. Surf. Sci. 2022, 578, 151893. [Google Scholar] [CrossRef]
- Goñi-Ciaurriz, L.; Vélaz, I. Antibacterial and degradable properties of β-cyclodextrin-TiO2 cellulose acetate and polylactic acid bionanocomposites for food packaging. Int. J. Biol. Macromol. 2022, 216, 347–360. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Elenien, O.M.A.; EL-Saeed, A.M.; Fatthallah, N.A. Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls. Mater. Des. 2016, 101, 218–225. [Google Scholar] [CrossRef]
- Toledo-Manuel, I.; Pérez-Alvarez, M.; Cadenas-Pliego, G.; Cabello-Alvarado, C.J.; Ledezma-Pérez, A.S.; Mata-Padilla, J.M.; Andrade-Guel, M.; Alvarado-Canché, C.N. Functionalization methods for ZnO nanoparticles with citric acid and their effect on the antimicrobial activity. Ceram. Int. 2024, 50, 42195–42206. [Google Scholar] [CrossRef]
Sample | Surface Modifier | Reaction Time (min) | Sample | Surface Modifier | Reaction Time (min) |
---|---|---|---|---|---|
B-TiO2 | - | - | B-ZrO2 | - | - |
TiO2-SA-30 | SA | 30 | ZrO2-SA-30 | SA | 30 |
TiO2-SA-45 | SA | 45 | ZrO2-SA-45 | SA | 45 |
TiO2-SA-60 | SA | 60 | ZrO2-SA-60 | SA | 60 |
TiO2-SA-120 | SA | 120 | ZrO2-SA-120 | SA | 120 |
TiO2-LA-30 | LA | 30 | ZrO2-LA-30 | LA | 30 |
TiO2-LA-45 | LA | 45 | ZrO2-LA-45 | LA | 45 |
TiO2-LA-60 | LA | 60 | ZrO2-LA-60 | LA | 60 |
TiO2-LA-120 | LA | 120 | ZrO2-LA-120 | LA | 120 |
Sample | IR%; (OB%) | Sample | IR%; (OB%) |
---|---|---|---|
B-TiO2 | 99.0 | B-ZrO2 | 99.5 |
TiO2-SA-30 | 8.72; (90.3) | ZrO2-SA-30 | 12.66; (86.4) |
TiO2-SA-45 | 18.62; (80.4) | ZrO2-SA-45 | 25.95; (73.6) |
TiO2-SA-60 | 20.47; (78.5) | ZrO2-SA-60 | 27.61; (72.0) |
TiO2-SA-120 | 20.61; (78.4) | ZrO2-SA-120 | 16.04; (83.5) |
TiO2-LA-30 | 95.75; (3.25) | ZrO2-LA-30 | 97.06; (2.44) |
TiO2-LA-45 | 96.25; (2.75) | ZrO2-LA-45 | 97.05; (2.45) |
TiO2-LA-60 | 95.76; (3.24) | ZrO2-LA-60 | 97.77; (1.23) |
TiO2-LA-120 | 96.03; (2.97) | ZrO2-LA-120 | 97.57; (1.43) |
Sample | 2θ Angle *; Plane (101) | Crystal Size (nm) | Standard Error (size) | Sample | 2θ Angle **; Plane (111) | Crystal Size (nm) | Standard Error (size) |
---|---|---|---|---|---|---|---|
B-TiO2 | 25.25 | 16.60 | 0.00234 | B-ZrO2 | 28.16 | 19.65 | 0.0023 |
TiO2-LA-30 | 25.34 | 17.06 | 0.00225 | ZrO2-LA-30 | 28.14 | 19.88 | 0.00247 |
TiO2-LA-45 | 25.31 | 17.15 | 0.00241 | ZrO2-LA-45 | 28.18 | 19.30 | 0.0029 |
TiO2-LA-60 | 25.34 | 17.10 | 0.00229 | ZrO2-LA-60 | 28.14 | 19.21 | 0.00268 |
TiO2-LA-120 | 25.33 | 16.98 | 0.00242 | ZrO2-LA-120 | 28.17 | 19.52 | 0.00276 |
TiO2-SA-30 | 25.29 | 13.21 | 0.00605 | ZrO2-SA-30 | 28.09 | 17.93 | 0.00104 |
TiO2-SA-45 | 25.37 | 12.30 | 0.00836 | ZrO2-SA-45 | 28.16 | 17.85 | 0.00366 |
TiO2-SA-60 | 25.17 | 12.39 | 0.00858 | ZrO2-SA-60 | 28.08 | 17.76 | 0.00381 |
TiO2-SA-120 | 25.32 | 11.76 | 0.00577 | ZrO2-SA-120 | 28.01 | 17.36 | 0.00208 |
Sample | C1s (eV) | O1s (eV) | Ti2p (eV) | C1s (at %) | O1s (at %) | Ti2p (at %) |
---|---|---|---|---|---|---|
B-TiO2 | NA | 530.31 | 458.84 | NA | 69.5 | 30.5 |
TiO2-LA-120 | 284.91 | 530.21 | 458.73 | 59.21 | 29.61 | 11.18 |
TiO2-LA-60 | 285.03 | 530.22 | 458.87 | 37.29 | 43.84 | 18.87 |
TiO2-SA-60 | 284.97 | 530.27 | 458.8 | 45.25 | 38.04 | 16.71 |
Sample | C1s (eV) | O1s (eV) | Zr3d (eV) | C1s at % | O1s at % | Zr3d at % |
---|---|---|---|---|---|---|
B-ZrO2 | NA | 530.19 | 182.08 | NA | 61.18 | 38.82 |
ZrO2-LA-45 | 284.37 | 530.08 | 182.08 | 33.28 | 41.08 | 25.65 |
ZrO2-LA-120 | 284.95 | 530.25 | 183.17 | 37.59 | 38.16 | 24.25 |
ZrO2-SA-60 | 284.87 | 530.21 | 182.08 | 48.74 | 30.93 | 20.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellez-Barrios, G.; Cadenas-Pliego, G.; Toledo-Manuel, I.; Pérez-Alvarez, M.; Alvarado-Canche, C.N.; Mancillas-Salas, S.; Andrade-Guel, M.; Mata-Padilla, J.M.; Cabello-Alvarado, C.J. Surface Modification of TiO2 and ZrO2 Nanoparticles with Organic Acids and Ultrasound to Enhance Antibacterial Activity. Materials 2025, 18, 2786. https://doi.org/10.3390/ma18122786
Tellez-Barrios G, Cadenas-Pliego G, Toledo-Manuel I, Pérez-Alvarez M, Alvarado-Canche CN, Mancillas-Salas S, Andrade-Guel M, Mata-Padilla JM, Cabello-Alvarado CJ. Surface Modification of TiO2 and ZrO2 Nanoparticles with Organic Acids and Ultrasound to Enhance Antibacterial Activity. Materials. 2025; 18(12):2786. https://doi.org/10.3390/ma18122786
Chicago/Turabian StyleTellez-Barrios, Guadalupe, Gregorio Cadenas-Pliego, Iván Toledo-Manuel, Marissa Pérez-Alvarez, Carmen N. Alvarado-Canche, Sergio Mancillas-Salas, Marlene Andrade-Guel, José Manuel Mata-Padilla, and Christian Javier Cabello-Alvarado. 2025. "Surface Modification of TiO2 and ZrO2 Nanoparticles with Organic Acids and Ultrasound to Enhance Antibacterial Activity" Materials 18, no. 12: 2786. https://doi.org/10.3390/ma18122786
APA StyleTellez-Barrios, G., Cadenas-Pliego, G., Toledo-Manuel, I., Pérez-Alvarez, M., Alvarado-Canche, C. N., Mancillas-Salas, S., Andrade-Guel, M., Mata-Padilla, J. M., & Cabello-Alvarado, C. J. (2025). Surface Modification of TiO2 and ZrO2 Nanoparticles with Organic Acids and Ultrasound to Enhance Antibacterial Activity. Materials, 18(12), 2786. https://doi.org/10.3390/ma18122786