Special Issue "Textile-Based Advanced Materials: Construction, Properties and Applications"

A special issue of Materials (ISSN 1996-1944).

Deadline for manuscript submissions: 31 December 2019.

Special Issue Editors

Prof. Dr. Thomas Bechtold
E-Mail Website
Guest Editor
Universität Innsbruck, Research Institute for Textile Chemistry and Textile Physics, Dornbirn, Austria
Interests: electrochemical processes; natural colorants; technical and apparel textiles
Dr. Avinash P. Manian
E-Mail Website
Guest Editor
Universität Innsbruck, Research Institute for Textile Chemistry and Textile Physics, Dornbirn, Austria
Interests: cellulose fiber science and chemistry; technical applications of textiles; textile coloration

Special Issue Information

Dear Colleagues,

The field of textiles is not limited only to apparel and fashion, and has applications in many more areas. The sector possesses an array of technologies to physically engineer fibrous materials into structures; to combine disparate materials to create hybrids, composites and blends; and for their chemical treatment. The results find applications in such diverse areas as medicine, physical well-being, sports, smart materials, engineering, energy storage, etc. This Special Issue focuses on such areas. The scope includes methods of construction, chemical processing, property characterizations and validation tests in targeted applications. We welcome both review and experimental articles on the topic.

Prof. Dr. Thomas Bechtold
Dr. Avinash P. Manian
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medical
  • engineering
  • composites
  • smart
  • energy
  • sports
  • ageing

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Surface Modification of Polyester-Fabric with Hydrogels and Silver Nanoparticles: Photochemical Versus Gamma Irradiation Methods
Materials 2019, 12(20), 3284; https://doi.org/10.3390/ma12203284 - 10 Oct 2019
Abstract
A Gamma irradiation and photochemical crosslinking/grafting of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-poly(ethylene glycol) methacrylate) (poly(HEMA-co-PEGMA)) hydrogels onto polyethyleneterephtalate fabric (PET) surfaces were evaluated, in order to obtain a hydrophilic homogeneous coating onto PET fabrics. The materials were characterized by FTIR-ATR, SEM, EDS, [...] Read more.
A Gamma irradiation and photochemical crosslinking/grafting of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-poly(ethylene glycol) methacrylate) (poly(HEMA-co-PEGMA)) hydrogels onto polyethyleneterephtalate fabric (PET) surfaces were evaluated, in order to obtain a hydrophilic homogeneous coating onto PET fabrics. The materials were characterized by FTIR-ATR, SEM, EDS, and thermal analysis. Furthermore, silver nanoparticles (AgNPs) were loaded by in situ reduction of AgNO3, and its antibacterial activity against Staphylococcus aureus and Escherichia coli was determined. Results showed a ticker coating of hydrogel using gamma radiation and stronger in deep modification of the fibers; however, by the photochemical method, a thin coating with good coverage of PET surface was obtained. The differences in hydrophilicity, thermal properties, and antibacterial activity of the coated fabrics by using both methods were rather small. Full article
Show Figures

Figure 1

Open AccessArticle
Textile Display with AMOLED Using a Stacked-Pixel Structure on a Polyethylene Terephthalate Fabric Substrate
Materials 2019, 12(12), 2000; https://doi.org/10.3390/ma12122000 - 22 Jun 2019
Abstract
An active-mode organic light-emitting diode (AMOLED) display on a fabric substrate is expected to be a prominent textile display for e-textile applications. However, the large surface roughness of the fabric substrate limits the aperture ratio—the area ratio of the organic light-emitting diode (OLED) [...] Read more.
An active-mode organic light-emitting diode (AMOLED) display on a fabric substrate is expected to be a prominent textile display for e-textile applications. However, the large surface roughness of the fabric substrate limits the aperture ratio—the area ratio of the organic light-emitting diode (OLED) to the total pixel area. In this study, the aperture ratio of the AMOLED panel fabricated on the polyethylene terephthalate fabric substrate was enhanced by applying a stacked-pixel structure, in which the OLED was deposited above the organic thin-film transistor (OTFT) pixel circuit layer. The stacked pixels were achieved using the following three key technologies. First, the planarization process of the fabric substrate was performed by sequentially depositing a polyurethane and photo-acryl layer, improving the surface roughness from 10 μm to 0.3 μm. Second, a protection layer consisting of three polymer layers, a water-soluble poly-vinyl alcohol, dichromated-polyvinylalcohol (PVA), and photo acryl, formed by a spin-coating processes was inserted between the OTFT circuit and the OLED layer. Third, a high mobility of 0.98 cm2/V∙s was achieved at the panel scale by using hybrid carbon nano-tube (CNT)/Au (5 nm) electrodes for the S/D contacts and the photo-acryl (PA) for the gate dielectric, enabling the supply of a sufficiently large current (40 μA @ VGS = −10 V) to the OLED. The aperture ratio of the AMOLED panel using the stacked-pixel structure was improved to 48%, which was about two times larger than the 19% of the side-by-side pixel, placing the OLED just beside the OTFTs on the same plane. Full article
Show Figures

Figure 1

Open AccessArticle
Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
Materials 2019, 12(11), 1805; https://doi.org/10.3390/ma12111805 - 03 Jun 2019
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturation include in vitro culture duration, culture [...] Read more.
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturation include in vitro culture duration, culture surface topography, and mechanical, chemical, and electrical stimulation. Stem cell-derived cardiomyocytes are traditionally cultured on glass surfaces coated with extracellular matrix derivatives such as gelatin. hiPSC-CMs are flat and round and their sarcomeres are randomly distributed and unorganized. Morphology can be enhanced by culturing cells on surfaces providing topographical cues to the cells. In this study, a textile based-culturing method used to enhance the maturation status of hiPSC-CMs is presented. Gelatin-coated polyethylene terephthalate (PET)-based textiles were used as the culturing surface for hiPSC-CMs and the effects of the textiles on the maturation status of the hiPSC-CMs were assessed. The hiPSC-CMs were characterized by analyzing their morphology, sarcomere organization, expression of cardiac specific genes, and calcium handling. We show that the topographical cues improve the structure of the hiPSC-CMs in vitro. Human iPSC-CMs grown on PET textiles demonstrated improved structural properties such as rod-shape structure and increased sarcomere orientation. Full article
Show Figures

Graphical abstract

Open AccessArticle
Investigation of Shear-Induced Deformation of Reinforcing Textiles by Optical Measurement Devices
Materials 2019, 12(7), 1029; https://doi.org/10.3390/ma12071029 - 28 Mar 2019
Abstract
When fiber-reinforced plastic (FRP) components are designed, it is very important to ensure that textiles are formed into complex 3D geometries without folds, and that the reinforcing structure is oriented appropriately. Most research in this context is focused on finite element (FE) forming [...] Read more.
When fiber-reinforced plastic (FRP) components are designed, it is very important to ensure that textiles are formed into complex 3D geometries without folds, and that the reinforcing structure is oriented appropriately. Most research in this context is focused on finite element (FE) forming simulations and the required characterization of textile reinforcements. However, the early stage of the design of FRPs, where kinematic draping simulations are used, is barely considered. In particular, the need for a critical shear angle for the execution and evaluation of kinematic draping simulations is often neglected. This paper presents an extended picture frame test stand with an optical device recording shear-induced deformations with the help of a laser line emitter. Associated hardware and software for detecting and quantifying the fold formation during a picture frame test were developed. With the additional recorded information, a material-specific critical shear angle can be determined, material behaviors can be compared, and FE-based simulation methods can be evaluated. This innovative test stand and the associated software tools will help engineers to decide on suitable materials and improve transparency in the early stages of the design process. Full article
Show Figures

Figure 1

Open AccessArticle
Mechanical Behaviors of Flax Fiber-Reinforced Composites at Different Strain Rates and Rate-Dependent Constitutive Model
Materials 2019, 12(6), 854; https://doi.org/10.3390/ma12060854 - 13 Mar 2019
Abstract
Flax fiber-reinforced composites (FFRCs) exhibit excellent environmentally friendly qualities, such as light weight, low cost, recyclability, and excellent mechanical properties. Understanding the dynamic mechanical behavior of FFRCs could broaden their potential applications in lightweight, crashworthy, and impact-critical structures. This study presents a study [...] Read more.
Flax fiber-reinforced composites (FFRCs) exhibit excellent environmentally friendly qualities, such as light weight, low cost, recyclability, and excellent mechanical properties. Understanding the dynamic mechanical behavior of FFRCs could broaden their potential applications in lightweight, crashworthy, and impact-critical structures. This study presents a study on the fabrication of FFRCs by vacuum-assisted resin infusion. The dynamic stress–strain responses of the fabricated specimens at strain rates ranging from 0.006 s 1 to 2200 s 1 were evaluated using quasi-static tests and the Split–Hopkinson pressure bar (SHPB). The results indicated that the FFRC exhibited superior strain rate sensitivity. Final deformation photographs and scanning electron micrographs clearly revealed the damage evolution of the FFRC specimens, as well as various failure mechanisms, including fiber–matrix debonding, fiber pull-out, and fiber fracture at different strain rates. On the basis of the experimental results, a simplified Johnson–Cook model was established to describe the strain-rate dependent constitutive model of FFRC. The validation of the suggested constitutive model was embedded in the finite element simulations and could well repeat the strain wave observed from the experiment results. Finally, the quasi-static compression and drop-hammer impact of pyramidal lattice structures with FFRC cores were investigated both numerically and experimentally, proving the effectiveness of the simplified Johnson–Cook model. This study could potentially contribute to a deeper understanding of the dynamic mechanical behavior of FFRCs and provide fundamental experimental data for future engineering applications. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers
Materials 2019, 12(4), 664; https://doi.org/10.3390/ma12040664 - 22 Feb 2019
Abstract
The paper presents a method of modifying polyacrylonitrile (PAN) fibers using polyaniline (PANI). The PAN fibers were doped with polyaniline that was obtained in two different ways. The first consisted of doping a spinning solution with polyaniline that was synthesized in an aqueous [...] Read more.
The paper presents a method of modifying polyacrylonitrile (PAN) fibers using polyaniline (PANI). The PAN fibers were doped with polyaniline that was obtained in two different ways. The first consisted of doping a spinning solution with polyaniline that was synthesized in an aqueous solution (PAN/PANI blended), and the second involved the synthesis of polyaniline directly in the spinning solution (PAN/PANI in situ). The obtained fibers were characterized by the methods: X-ray powder diffraction (XRD), scanning electron microscope (SEM), fourier-transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC). Analysis of the results showed strong interactions between the nitrile groups of polyacrylonitrile and polyaniline in the PAN/PANI in situ fibers. The results of mechanical strength tests indicated that the performance of the PAN/PANI mixture significantly improved the mechanical parameters of polyaniline, although these fibers had a weaker strength than the unmodified PAN fibers. The fibers obtained as a result of the addition of PANI to PAN were dielectric, whereas the PANI-synthesized in situ were characterized by a mass-specific resistance of 5.47 kΩg/cm2. Full article
Show Figures

Graphical abstract

Open AccessArticle
Uniaxial Tensile Behavior of Carbon Textile Reinforced Mortar
Materials 2019, 12(3), 374; https://doi.org/10.3390/ma12030374 - 25 Jan 2019
Abstract
This paper investigates the effects of the reinforcement ratio, volume fraction of steel fibers, and prestressing on the uniaxial tensile behavior of carbon textile reinforced mortar (CTRM) through uniaxial tensile tests. The results show that the tensile strength of CTRM specimens increases with [...] Read more.
This paper investigates the effects of the reinforcement ratio, volume fraction of steel fibers, and prestressing on the uniaxial tensile behavior of carbon textile reinforced mortar (CTRM) through uniaxial tensile tests. The results show that the tensile strength of CTRM specimens increases with the reinforcement ratio, however the textile–matrix bond strength becomes weaker and debonding can occur. Short steel fibers are able to improve the mechanical properties of the entire CTRM composite and provide additional “shear resistant ability” to enhance the textile– matrix bond strength, resulting in finer cracks with smaller spacing and width. Investigations into the fracture surfaces using an optical microscope clarify these inferences. Increases in first-crack stress and tensile strength are also observed in prestressed TRM specimens. In this study, the combination of 1% steel fibers and prestressing at 15% of the ultimate tensile strength of two-layer textiles is found to be the optimum configuration, producing the highest first-crack stress and tensile strength and the most reasonable multi-cracking pattern. Full article
Show Figures

Figure 1

Open AccessArticle
Enhancing the Dyeability of Polyimide Fibers with the Assistance of Swelling Agents
Materials 2019, 12(3), 347; https://doi.org/10.3390/ma12030347 - 22 Jan 2019
Cited by 1
Abstract
Polyimide (PI) fibers have outstanding thermal stability and mechanical properties, but are difficult to dye with disperse and basic dyes. In this work, it was proposed to use N-methylformanilide (MFA), phenoxyisopropanol (PIP), and acetophenone (AP) as swelling agents to enhance the dyeability of [...] Read more.
Polyimide (PI) fibers have outstanding thermal stability and mechanical properties, but are difficult to dye with disperse and basic dyes. In this work, it was proposed to use N-methylformanilide (MFA), phenoxyisopropanol (PIP), and acetophenone (AP) as swelling agents to enhance the dyeability of PI fibers. The PI fibers treated with swelling agents were characterized by thermal gravimetric analysis, scanning electronic microscopy, tensile testing, and crystalline analysis. It was found that the swelling agents penetrated into the PI fibers in amounts greater than 10% (pertaining to the weight of PI fibers). The swelling agents did not really swell the PI fibers, but broke the interaction forces between the PI macromolecules. With the assistance of swelling agent, the PI fibers could be dyed with disperse and basic dyes in strong color strengths. AP exhibited the best performance for enhancing the dyeability of PI fibers, followed by MFA and PIP. The dyed PI fibers were found to have good colorfastness to washing. Full article
Show Figures

Figure 1

Back to TopTop