materials-logo

Journal Browser

Journal Browser

Two-Dimensional Semiconductors—Advancements in Material Growth and Characterization

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Electronic Materials".

Deadline for manuscript submissions: 10 November 2025 | Viewed by 471

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
Interests: 2D materials; silicon carbide; materials fabrication; renewable energy

Special Issue Information

Dear Colleagues,

We are pleased to invite contributions to this Special Issue titled Special Issue: Two-Dimensional Semiconductors—Advancements in Material Growth and Characterization”.

As we move toward more energy-efficient technologies, semiconductors are becoming the driving force behind innovations across diverse technological fields. Nano-semiconductors, in particular, are set to play a pivotal role in advancing the future of these technologies. These materials offer unparalleled potential for miniaturization, increased efficiency, and the exploitation of quantum effects. This Special Issue will focus on cutting-edge developments in material growth and characterization. Topics of interest include, but are not limited to, the following: novel growth techniques (e.g., remote epitaxy, non-equilibrium synthesis) and understanding nucleation and growth mechanisms; 2D/3D heterostructures; interface and defect engineering; material transfer and integrations into various substrates; modelling; and experimental validation. Contributions studying how these materials enable advances in various technical fields, such as nanoelectronics, optoelectronics, quantum computing, and thermal management, are also welcomed.

We encourage authors to submit papers that provide new insights into the fundamental mechanisms, innovative fabrication techniques, and transformative potential of these materials in driving the future of advanced semiconductor technologies.

We look forward to your contributions to this exciting and forward-looking Special Issue.

Dr. Sakineh Chabi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nano-semiconductors
  • 2D materials
  • 2D/3D heterostructures
  • CVD growth
  • epitaxial growth
  • nanosheets

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 9841 KiB  
Article
Influence of Different Precursors on Properties and Photocatalytic Activity of g-C3N4 Synthesized via Thermal Polymerization
by Debora Briševac, Ivana Gabelica, Floren Radovanović-Perić, Kristina Tolić Čop, Gordana Matijašić, Davor Ljubas and Lidija Ćurković
Materials 2025, 18(11), 2522; https://doi.org/10.3390/ma18112522 - 27 May 2025
Viewed by 386
Abstract
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized [...] Read more.
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized in a muffle furnace at three different temperatures: 450°, 500°, and 550 °C for 2 h, while the samples made of a mixture of melamine and cyanuric acid (with mass ratios of 1:1, 1:2, and 2:1) were synthesized at 550 °C for 2 h. All the samples were characterized in order to determine their chemical and physical properties, such as crystallite size and structure, and phase composition by the following techniques: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Nitrogen adsorption/desorption isotherms were used to investigate the Brunauer, Emmett, and Teller (BET) specific surface area and Barrett–Joyner–Halenda (BJH) pore size distribution. Band gap values were determined by diffuse reflectance spectroscopy (DRS). Furthermore, adsorption and photocatalytic degradation of the local anesthetic drug procaine were monitored under UV-A, visible, and simulated solar irradiation in a batch reactor. Kinetic parameters, as well as photocatalytic mechanisms using scavengers, were determined and analyzed. The results of the photocatalysis experiments were compared to the benchmark TiO2 Evonik Aeroxide P25. The results indicated that the g-C3N4 sample synthesized from urea at 500 °C for 2 h exhibited the highest degradation rate of procaine under visible light. Full article
Show Figures

Figure 1

Back to TopTop