materials-logo

Journal Browser

Journal Browser

Piezoelectric, Ferroelectric, and Dielectric Materials: Properties and Related Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Electronic Materials".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 3911

Special Issue Editors


E-Mail Website
Guest Editor
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
Interests: piezoelectrics; ferroelectrics; dielectrics; ceramics; materials
Special Issues, Collections and Topics in MDPI journals
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Interests: piezo-/ferroelectric ceramic; polymer dielectrics

E-Mail Website
Guest Editor
School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
Interests: piezoelectric; ferroelectric; dielectric materials; pyroelectric

Special Issue Information

Dear Colleagues,

We are preparing a Special Issue titled "Piezoelectric, Ferroelectric, and Dielectric Materials: Properties and Related Applications", Guest-Edited by Guangzhi Dong, to be published in [Materials] (IF: 3.4, ISSN 1996-1944).

Piezoelectric, ferroelectric, and dielectric materials have diverse functionalities that enable numerous applications, ranging from piezoelectric sensing to dielectric energy storage, which have attracted extensive research and development interests. This Special Issue will publish experimental and theoretical papers aiming to understand piezoelectric, ferroelectric, and dielectric properties, as well as their associated phenomena, in addition to applied papers dealing with the utilization of these materials in devices and systems.

This Special Issue includes—but is not limited to—the following areas:

  • The fundamentals of piezoelectric, ferroelectric, dielectric, and electrostrain properties.
  • Property characterization and property–structure relationship studies.
  • Advances in processing techniques for high-performance functional materials.
  • New systems, including ceramics, crystals, thin/thick films, and composites.
  • Industrial applications of piezoelectric, ferroelectric, and dielectric materials, including piezoelectric transducers/sensors, ferroelectric memory devices, electrostrictive actuators, dielectric energy storage applications, etc.
  • Challenges in and perspectives of development.

For this Special Issue, we invite authors to contribute research articles or reviews on the broad range of topics listed above.

Dr. Guangzhi Dong
Dr. Hang Luo
Dr. Baoyan Fan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • piezoelectrics
  • ferroelectrics
  • dielectrics
  • relaxor
  • electrostrain
  • electromechanical
  • energy storage
  • electrocaloric
  • electronic
  • ceramics
  • crystals
  • films
  • composites
  • functional materials
  • fundamentals
  • processing
  • theory
  • characterization
  • application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

9 pages, 4795 KiB  
Article
Super High-k Dielectric via Composition-Dependent Hafnium Zirconium Oxide Superlattice for Si Nanosheet Gate-All-Around Field-Effect Transistors with NH3 Plasma-Optimized Interfaces
by Yi-Ju Yao, Yu-Min Fu, Yu-Hung Chen, Chen-You Wei, Kai-Ting Huang, Guang-Li Luo, Fu-Ju Hou, Yu-Sheng Lai and Yung-Chun Wu
Materials 2025, 18(8), 1740; https://doi.org/10.3390/ma18081740 - 10 Apr 2025
Cited by 1 | Viewed by 608
Abstract
This paper presents an advanced dielectric engineering approach utilizing a composition-dependent hafnium zirconium oxide (Hf1-xZrxO2) superlattice (SL) structure for Si nanosheet gate-all-around field-effect transistors (Si NSGAAFETs). The dielectric (DE) properties of solid solution (SS) and SL Hf [...] Read more.
This paper presents an advanced dielectric engineering approach utilizing a composition-dependent hafnium zirconium oxide (Hf1-xZrxO2) superlattice (SL) structure for Si nanosheet gate-all-around field-effect transistors (Si NSGAAFETs). The dielectric (DE) properties of solid solution (SS) and SL Hf1-xZrxO2 capacitors were systematically characterized through capacitance-voltage (C-V) and polarization-voltage (P-V) measurements under varying annealing conditions. A high dielectric constant (k-value) of 59 was achieved in SL-Hf0.3Zr0.7O2, leading to a substantial reduction in equivalent oxide thickness (EOT). Furthermore, the SL-Hf0.3Zr0.7O2 dielectric was integrated into Si NSGAAFETs, with the interfacial layer (IL) further optimized via NH3 plasma treatment. The resulting devices exhibited superior electrical performance, including an enhanced ON-OFF current ratio (ION/IOFF) reaching 107, an increased drive current, and significantly reduced gate leakage. These results highlight the potential of SL-Hf0.3Zr0.7O2 as a high-k dielectric solution for overcoming EOT scaling challenges in advanced CMOS technology and enabling further innovation in next-generation logic applications. Full article
Show Figures

Figure 1

12 pages, 4379 KiB  
Article
Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties
by Srinivas Pattipaka, Yeseul Lim, Yundong Jeong, Mahesh Peddigari, Yuho Min, Jae Won Jeong, Jongmoon Jang, Sung-Dae Kim and Geon-Tae Hwang
Materials 2024, 17(20), 5044; https://doi.org/10.3390/ma17205044 - 15 Oct 2024
Viewed by 1243
Abstract
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications [...] Read more.
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials. Full article
Show Figures

Figure 1

16 pages, 4833 KiB  
Article
Improved Energy Density at High Temperatures of FPE Dielectrics by Extreme Low Loading of CQDs
by Huan Wang, Hang Luo, Yuan Liu, Fan Wang, Bo Peng, Xiaona Li, Deng Hu, Guanghu He and Dou Zhang
Materials 2024, 17(14), 3625; https://doi.org/10.3390/ma17143625 - 22 Jul 2024
Cited by 3 | Viewed by 1461
Abstract
Electrostatic capacitors, with the advantages of high-power density, fast charging–discharging, and outstanding cyclic stability, have become important energy storage devices for modern power electronics. However, the insulation performance of the dielectrics in capacitors will significantly deteriorate under the conditions of high temperatures and [...] Read more.
Electrostatic capacitors, with the advantages of high-power density, fast charging–discharging, and outstanding cyclic stability, have become important energy storage devices for modern power electronics. However, the insulation performance of the dielectrics in capacitors will significantly deteriorate under the conditions of high temperatures and electric fields, resulting in limited capacitive performance. In this paper, we report a method to improve the high-temperature energy storage performance of a polymer dielectric for capacitors by incorporating an extremely low loading of 0.5 wt% carbon quantum dots (CQDs) into a fluorene polyester (FPE) polymer. CQDs possess a high electron affinity energy, enabling them to capture migrating carriers and exhibit a unique Coulomb-blocking effect to scatter electrons, thereby restricting electron migration. As a result, the breakdown strength and energy storage properties of the CQD/FPE nanocomposites are significantly enhanced. For instance, the energy density of 0.5 wt% CQD/FPE nanocomposites at room temperature, with an efficiency (η) exceeding 90%, reached 9.6 J/cm3. At the discharge energy density of 0.5 wt%, the CQD/FPE nanocomposites remained at 4.53 J/cm3 with an efficiency (η) exceeding 90% at 150 °C, which surpasses lots of reported results. Full article
Show Figures

Figure 1

Back to TopTop