materials-logo

Journal Browser

Journal Browser

The Microstructures and Advanced Functional Properties of Thin Films

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Thin Films and Interfaces".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 6381

Special Issue Editors

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
Interests: physical vapor deposition of thin films; oxide and nitride nanocomposites; metal matrix composites; multi-scale characterization and modeling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Interests: light-weight structural materials; high strength/ductile materials; radiation-damage tolerant materials; multi-principal elements and/or multiphase alloys; metal-based and ceramic-based composites
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Interests: chemical and physical vapor deposition of thin films; electrical properties; graphene; metallic composites; electronic behaviors

Special Issue Information

Dear Colleagues,

Due to the rapid development of highly integrated microelectronics and optoelectronic devices over the past several years, the demand and properties required for functional thin films for use in related fields have gradually increased, such as transparent conductive films, heat dissipation films, electromagnetic shielding films, optical films, and so on. Owing to its high efficiency and controllability, vapor deposition, including chemical vapor deposition and physical vapor deposition, has been a major technology used for the synthesis of thin films. During the deposition process, the kinetic and thermodynamic characteristics of atoms effectively influence the microstructures of the films, such as grain size, grain orientation, surface roughness, component distribution, and so on. The intrinsic properties and internal microstructures of thin film materials directly determine their functional performance. Therefore, the unique design of materials and the relationship between the deposition process and the microstructure and functional performance of the thin films are fundamental to promoting the development of advanced functional thin films and their relative applications in the future.

This Special Issue invites the submission of original research or review articles focused on the use of advanced functional thin films within the optical, thermal, and electrical fields. Topics of interest include, but are not limited to, the growth and fabrication of thin films through vapor deposition, the microstructure and unique design strategies employed, and the advanced functional properties exhibited by these thin films.

Dr. Yue Liu
Prof. Dr. Jian Wang
Guest Editors

Dr. Jiamiao Ni
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • deposition
  • microstructure
  • electrical properties
  • thermal properties
  • optical properties
  • thin film growth
  • functional thin film applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4516 KiB  
Article
Fabrication and Optoelectronic Properties of Advanced Quinary Amorphous Oxide Semiconductor InGaZnSnO Thin Film
by Hongyu Wu, Liang Fang, Zhiyi Li, Fang Wu, Shufang Zhang, Gaobin Liu, Hong Zhang, Wanjun Li and Wenlin Feng
Materials 2025, 18(9), 2090; https://doi.org/10.3390/ma18092090 - 2 May 2025
Viewed by 259
Abstract
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger [...] Read more.
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger mobility owing to the addition of Tin (Sn) in IZO. So, whether Sn doping can increase the optoelectronic properties of IGZO is a new topic worth studying. In this study, four series of quinary InGaZnSnO (IGZTO) oxide thin films were deposited on glass substrates using a high-purity IGZTO (In:Ga:Zn:Sn:O = 1:0.5:1.5:0.25:x, atomic ratio) ceramic target by RF magnetron sputtering. The effects of fabrication parameters (sputtering power, argon gas flow, and target-to-substrate distance) and film thickness on the microstructure, optical, and electrical properties of IGZTO thin films were investigated. The results show that all IGZTO thin films deposited at room temperature (RT) are amorphous and have a smooth and uniform surface with a low roughness (RMS of 0.441 nm, RA of 0.332 nm). They exhibit good average visible light transmittance (89.02~90.69%) and an optical bandgap of 3.47~3.56 eV. When the sputtering power is 90 W, the argon gas flow rate is 50 sccm, and the target-to-substrate distance is 60 mm, the IGZTO films demonstrate optimal electrical properties: carrier concentration (3.66 × 1019 cm−3), Hall mobility (29.91 cm2/Vs), and resistivity (0.54 × 10−2 Ω·cm). These results provide a valuable reference for the property modulation of IGZTO films and the potential application in optoelectronic devices such as TFTs. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

12 pages, 4152 KiB  
Article
Cost-Effective Inorganic Multilayer Film for High-Performance Daytime Radiative Cooling
by Huan Liu, Yingxin Yang, Atsha Ambar, Zhiqiang Fan, Ying Sun and Cong Wang
Materials 2025, 18(8), 1729; https://doi.org/10.3390/ma18081729 - 10 Apr 2025
Viewed by 372
Abstract
Inorganic multilayer films for radiative cooling have garnered significant attention due to their exceptional resistance to photothermal degradation. However, the design and fabrication of structurally simple and cost-effective inorganic multilayer films remain challenging due to limitations in material properties and the preparation process. [...] Read more.
Inorganic multilayer films for radiative cooling have garnered significant attention due to their exceptional resistance to photothermal degradation. However, the design and fabrication of structurally simple and cost-effective inorganic multilayer films remain challenging due to limitations in material properties and the preparation process. This study develops a structurally simple inorganic multilayer film (Si3N4/SiO2/Al2O3/Si3N4/Al) for daytime radiative cooling. Instead of the conventional periodic alternation of high and low refractive indices (H-L…H-L), this work proposes a H-L-L-H symmetric multilayer film structure to achieve improved radiative cooling performance. The fabricated multilayer film demonstrates superior radiative cooling properties and lower thickness than that in the current studies using Al as the reflective layer, achieving a solar reflectance of 89.57%, an atmospheric window (8–13 μm) emissivity of 83.41%, and a net cooling power of 63.38 W·m−2. Under direct sunlight, the multilayer film demonstrated a maximum temperature reduction of approximately 3 °C compared to the reference sample. By employing a thermal treatment process for the Si3N4 layer, the poor adhesion between the Al layer and the Si3N4 layer is successfully addressed without compromising optical performance. The underlying physical mechanisms are also elucidated. This work provides an effective strategy for developing daytime radiative cooling inorganic multilayer films suitable for large-scale industrial production. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

12 pages, 3545 KiB  
Article
High Capacitance Density and Thermal Stability in Strontium
by Yilong Feng, Zhenya Lu and Ming Lv
Materials 2025, 18(8), 1687; https://doi.org/10.3390/ma18081687 - 8 Apr 2025
Viewed by 267
Abstract
Magnetron sputtering allows for the accurate estimation of film thickness. Strontium titanate (STO) thin films were deposited on Nb-doped STO substrates using radiofrequency magnetron sputtering technology. The microstructures and dielectric properties of STO thin films were investigated. X-ray diffraction (XRD) analysis indicates that [...] Read more.
Magnetron sputtering allows for the accurate estimation of film thickness. Strontium titanate (STO) thin films were deposited on Nb-doped STO substrates using radiofrequency magnetron sputtering technology. The microstructures and dielectric properties of STO thin films were investigated. X-ray diffraction (XRD) analysis indicates that uniform polycrystalline STO films were obtained after thermal annealing at 650 °C. The films exhibit a significant correlation between thickness, annealing temperature, and breakdown field strength. The optimal film with a thickness of 1150 nm achieves a capacitance density of 1688 pF/mm2 and a breakdown field strength of 270 kV/mm. Additionally, STO films annealed at 650 °C maintained their capacitance value within ±15% across a temperature range of −55 °C to 125 °C. These results highlight the potential of STO thin films for high-performance capacitor applications. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

20 pages, 10241 KiB  
Article
Influence of SiO2 Nanoparticles Extracted from Biomass on the Properties of Electrodeposited Ni Matrix Composite Films on Si(100) Substrate
by Ivana O. Mladenović, Nebojša D. Nikolić, Vladislav Jovanov, Željko M. Radovanović, Marko M. Obradov, Dana G. Vasiljević-Radović and Marija M. Vuksanović
Materials 2024, 17(16), 4138; https://doi.org/10.3390/ma17164138 - 21 Aug 2024
Viewed by 1207
Abstract
Lab-made biosilica (SiO2) nanoparticles were obtained from waste biomass (rice husks) and used as eco-friendly fillers in the production of nickel matrix composite films via the co-electrodeposition technique. The produced biosilica nanoparticles were characterized using XRD, FTIR, and FE-SEM/EDS. Amorphous nano-sized [...] Read more.
Lab-made biosilica (SiO2) nanoparticles were obtained from waste biomass (rice husks) and used as eco-friendly fillers in the production of nickel matrix composite films via the co-electrodeposition technique. The produced biosilica nanoparticles were characterized using XRD, FTIR, and FE-SEM/EDS. Amorphous nano-sized biosilica particles with a high SiO2 content were obtained. Various current regimes of electrodeposition, such as direct current (DC), pulsating current (PC), and reversing current (RC) regimes, were applied for the fabrication of Ni and Ni/SiO2 films from a sulfamate electrolyte. Ni films electrodeposited with or without 1.0 wt.% biosilica nanoparticles in the electrolyte were characterized using FE-SEM/EDS (morphology/elemental analyses, roundness), AFM (roughness), Vickers microindentation (microhardness), and sheet resistance. Due to the incorporation of SiO2 nanoparticles, the Ni/SiO2 films were coarser than those obtained from the pure sulfamate electrolyte. The addition of SiO2 to the sulfamate electrolyte also caused an increase in the roughness and electrical conductivity of the Ni films. The surface roughness values of the Ni/SiO2 films were approximately 44.0%, 48.8%, and 68.3% larger than those obtained for the pure Ni films produced using the DC, PC, and RC regimes, respectively. The microhardness of the Ni and Ni/SiO2 films was assessed using the Chen-Gao (C-G) composite hardness model, and it was shown that the obtained Ni/SiO2 films had a higher hardness than the pure Ni films. Depending on the applied electrodeposition regime, the hardness of the Ni films increased from 29.1% for the Ni/SiO2 films obtained using the PC regime to 95.5% for those obtained using the RC regime, reaching the maximal value of 6.880 GPa for the Ni/SiO2 films produced using the RC regime. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

9 pages, 3857 KiB  
Article
Electrical Resistivity Measurements of Surface-Coated Copper Foils
by Jiamiao Ni, Zhuoxin Yan, Yue Liu and Jian Wang
Materials 2024, 17(12), 2951; https://doi.org/10.3390/ma17122951 - 17 Jun 2024
Cited by 1 | Viewed by 1513
Abstract
Due to the direct contact between the probe and sample, the contact of the four-probe method is important for the structural integrity of the sample and the accuracy of electrical resistivity measurements, especially for surface-coated metal foils with multilayered structures. Here, we analyzed [...] Read more.
Due to the direct contact between the probe and sample, the contact of the four-probe method is important for the structural integrity of the sample and the accuracy of electrical resistivity measurements, especially for surface-coated metal foils with multilayered structures. Here, we analyzed the accuracy and stability of four-probe method probing on different sides of copper (Cu) foils covered with graphene (Gr). Theoretical simulations showed similar potential distributions on the probe tip when probing on the Cu and Gr sides. The resistivity of the Gr/Cu foil was 2.31 ± 0.02 μΩ·cm when measured by probing on the Cu side, and 2.30 ± 0.10 μΩ·cm when measured by probing on the Gr side. The major difference in the mean deviation is attributed to surface damage. In addition, the method of probing on the Cu side was sensitive to the resistivity changes of Gr induced by polymers with a dielectric constant range of 2~12, which is consistent with the calculations based on the random phase approximation theory. Our results demonstrated that the probing position on the metal side in the four-probe method can effectively protect the structural integrity of the functional surface-coated layer and maintain the high sensitivity of the measurement, providing guidance for the resistivity measurements of other similarly heterogeneous materials. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

15 pages, 5184 KiB  
Article
Effects of Hydrogen Plasma Treatment on the Electrical Behavior of Solution-Processed ZnO Thin Films
by Ji-In Park, Hyun Uk Lee, Christopher Pearson, Michael C. Petty and Yesul Jeong
Materials 2024, 17(11), 2673; https://doi.org/10.3390/ma17112673 - 1 Jun 2024
Viewed by 1034
Abstract
In this study, the effect of atmospheric hydrogen plasma treatment on the in-plane conductivity of solution-processed zinc oxide (ZnO) in various environments is reported. The hydrogen-plasma-treated and untreated ZnO films exhibited ohmic behavior with room-temperature in-plane conductivity in a vacuum. When the untreated [...] Read more.
In this study, the effect of atmospheric hydrogen plasma treatment on the in-plane conductivity of solution-processed zinc oxide (ZnO) in various environments is reported. The hydrogen-plasma-treated and untreated ZnO films exhibited ohmic behavior with room-temperature in-plane conductivity in a vacuum. When the untreated ZnO film was exposed to a dry oxygen environment, the conductivity rapidly decreased, and an oscillating current was observed. In certain cases, the thin film reversibly ‘switched’ between the high- and low-conductivity states. In contrast, the conductivity of the hydrogen-plasma-treated ZnO film remained nearly constant under different ambient conditions. We infer that hydrogen acts as a shallow donor, increasing the carrier concentration and generating oxygen vacancies by eliminating the surface contamination layer. Hence, atmospheric hydrogen plasma treatment could play a crucial role in stabilizing the conductivity of ZnO films. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

16 pages, 5021 KiB  
Article
Turning Non-Sticking Surface into Sticky Surface: Correlation between Surface Topography and Contact Angle Hysteresis
by Jingyuan Bai, Xuejiao Wang, Meilin Zhang, Zhou Yang and Jin Zhang
Materials 2024, 17(9), 2006; https://doi.org/10.3390/ma17092006 - 25 Apr 2024
Viewed by 1165
Abstract
We present a surface modification technique that turns CuNi foam films with a high contact angle and non-sticking property into a sticky surface. By decorating with mesh-like biaxially oriented polypropylene (BOPP) and adjusting the surface parameters, the surface exhibits water-retaining capability even when [...] Read more.
We present a surface modification technique that turns CuNi foam films with a high contact angle and non-sticking property into a sticky surface. By decorating with mesh-like biaxially oriented polypropylene (BOPP) and adjusting the surface parameters, the surface exhibits water-retaining capability even when being held upside down. The wetting transition process of droplets falling on its surface were systematically studied using the finite element simulation method. It is found that the liquid filled the surface microstructure and curvy three-phase contact line. Moreover, we experimentally demonstrated that this surface can be further applied to capture underwater air bubbles. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

Back to TopTop