materials-logo

Journal Browser

Journal Browser

Advances in Metal Coatings for Wear and Corrosion Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 10 July 2025 | Viewed by 25240

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Soil Science, Agrotechnology and Plant Protection "Nikola Pushkarov", Sofia, Bulgaria
Interests: mechanisation of agriculture; agricultural engineering; mechanical properties; materials engineering; coating surface engineering; electrospark deposition; mathematical modelling; optimisation

E-Mail Website
Guest Editor
Institute of Soil Sciences, Agrotechnologies and Plant Protection “N. Pushkarov”, Sofia, Bulgaria
Interests: mechanical properties; materials engineering; coating surface engineering; electrospark deposition; technologies; tribology; powder technologies; intermetallic; mechanisation of agriculture; agricultural engineering

E-Mail Website
Guest Editor
Faculty of Industrial Technology, Technical University of Sofia, Sofia, Bulgaria
Interests: tribology; friction; coating; lubrication; wear testing; surface engineering; materials

Special Issue Information

Dear Colleagues,

Wear- and corrosion-resistant coatings are among the most effective technological means for increasing the durability of equipment and machines and reducing labour, energy, and material costs; they are being increasingly used in all technical fields. In many cases, using coatings is the only possible or most economical decision to solve several technical problems. However, for the various products' numerous and different operating conditions, it is necessary to create coatings that differ in composition, structure, and morphology.

On the other hand, the modern intensification of production and operational processes also gives rise to the need to develop and create new coatings with improved composition, structure, construction, and properties. That is why the creation and development of new functional coatings with improved characteristics and increased service properties and the development of new coating materials and technologies for their deposition is one of the current research directions in advanced materials science.

This Special Issue, titled “Advances in Metal Coatings for Wear and Corrosion Applications”, aims to collate the latest advances in the field of wear- and corrosion-resistant coatings and provide a platform for their dissemination among scientists, researchers, and industrial experts.

We cordially invite you to contribute a research or review article to this Special Issue and make your scientific work more discoverable and popular.

We encourage the submission of work focused on, but not limited to, the following topics:

  • Development and improvement of processes and methods for surface modification;
  • Development of new coating materials and improvement of the technologies for their application, with possibilities to control the processes and characteristics of the resulting coatings;
  • Patterns of formation, quality characteristics, and properties of the resulting coatings;
  • Creation of and research into new wear- and corrosion-resistant coatings from new roofing materials, meeting different requirements depending on the specific operating conditions, such as improved microhardness, connection to the substrate, strength and toughness, heat resistance, biocompatibility, wear resistance, corrosion resistance, and economic efficiency;
  • Composite and multilayer coatings with a structure of layers with different phase compositions, and also with an amorphous and nanocrystalline structure;
  • Studies on the influence of the type and processing modes of surface treatment and the type of covering materials on the composition, structure, morphology, mechanism, and regularities of friction wear and corrosion wear of the modified surfaces;
  • Methods for research and modelling of the surface properties.

Prof. Dr. Georgi Kostadinov
Dr. Todor Penyashki
Dr. Mara Kandeva
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coatings
  • processes and methods
  • surface modification
  • new coating materials
  • structure
  • wear and corrosion resistance
  • characteristics
  • properties
  • biocompatibility

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (21 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 6447 KiB  
Article
Influence of C2H2 Flow Rates on Optical Properties, Surface Roughness, and Residual Stress of Ti/WC Thin Films Deposited on Glass Substrates
by Chuen-Lin Tien, Yi-Lin Wang, Yuan-Ming Chang, Shih-Chin Lin and Ching-Chiun Wang
Materials 2025, 18(6), 1269; https://doi.org/10.3390/ma18061269 - 13 Mar 2025
Viewed by 388
Abstract
This paper investigates the influence of C2H2 flow rates on the optical properties, surface roughness, and residual stress of Ti/WC thin films deposited on glass substrates. A range of Ti/WC thin films with varying carbon contents were prepared using the reactive [...] Read more.
This paper investigates the influence of C2H2 flow rates on the optical properties, surface roughness, and residual stress of Ti/WC thin films deposited on glass substrates. A range of Ti/WC thin films with varying carbon contents were prepared using the reactive pulsed DC magnetron sputtering technique. The properties of the Ti/WC films can be tuned by adjusting the deposition parameters, among which the acetylene (C2H2) flow rate plays a key role in determining the thin film’s microstructure, optical properties, and stress behavior. The optical properties of the thin films were analyzed using UV-visible-NIR spectroscopy and Fourier transform infrared (FTIR) spectroscopy, the surface morphology was analyzed using microscopic interferometry, and the residual stress in the films was measured using a homemade Twyman–Green interferometer. The measurement results show that the average reflectance of Ti/WC films decreases with the increase in the C2H2 flow rate, and the measured value changes from 52.24% to 44.56% in the wavelength of 400–800 nm. The infrared reflectance of Ti/WC films in the wavelength of 2.5–25 μm is 81.8% for 10 sccm, 80.8% for 20 sccm, 77.2% for 30 sccm, and 73.6% for 40 sccm. The tensile stress of the Ti/WC films deposited on B270 substrates increases with the increase in the C2H2 flow rate, and the stress value changes from 0.361 GPa to 0.405 GPa. The surface roughness of Ti/WC films initially increases and then decreases slightly with the increase in the C2H2 flow rate. These results indicate that the C2H2 flow ratio significantly affects the reflectance in the visible and infrared bands, surface roughness, and residual stress of the Ti/WC films, which is of great significance for optimizing thin film performance to meet specific application requirements. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

15 pages, 19752 KiB  
Article
Nanosecond Laser Processing of Titanium in Organic Liquids as a Method for Obtaining Titanium Carbide Coatings
by Rosen Nikov, Nikolay Nedyalkov, Stefan Valkov, Tatyana Koutzarova, Lyubomir Aleksandrov, Genoveva Atanasova and Katarzyna Grochowska
Materials 2025, 18(3), 598; https://doi.org/10.3390/ma18030598 - 28 Jan 2025
Viewed by 791
Abstract
This work presents results on nanosecond laser ablation of a titanium (Ti) plate immersed in a liquid medium using the fundamental wavelength (1064 nm) of a nanosecond Nd:YAG laser system. The laser radiation was focused on the target surface as scanning was accomplished [...] Read more.
This work presents results on nanosecond laser ablation of a titanium (Ti) plate immersed in a liquid medium using the fundamental wavelength (1064 nm) of a nanosecond Nd:YAG laser system. The laser radiation was focused on the target surface as scanning was accomplished by an XY translation stage. The laser processing of the Ti targets took place in two organic liquids—liquid paraffin and diesel oil. The morphology of the structured surfaces and the structure and phase composition of the samples were studied; their dependences on the processing parameters are discussed. With both liquid media used, crack formation on the surface of the laser-treated Ti target was observed. Formation of a titanium carbide (TiC) phase was found whose properties could be tuned by varying the laser irradiation parameters. Raman measurements were utilized to analyze the carbon structure formed in the resulting coatings. The results of surface electron microscopy reveal that the thickness of the resulting coatings reached 20 µm. Some of the obtained coatings demonstrated about three times higher hardness compared to the native Ti sample. The technique proposed can be used in surface modification of materials in view of improving their mechanical properties. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

15 pages, 2943 KiB  
Article
Mechanical Properties and Corrosion Resistance of Thin Ceria and Phosphate Mono- and Multilayers Deposited on Technically Pure Al 1050
by Sabina Cherneva, Reni Andreeva and Dimitar Stoychev
Materials 2025, 18(2), 424; https://doi.org/10.3390/ma18020424 - 17 Jan 2025
Viewed by 702
Abstract
Calcium phosphates are often used for biomedical applications. Hydroxyapatite, for example, has a wide range of applications because it mimics the mineral component of natural bone. Widespread interest in the catalytic properties of ceria is due to its use in automotive catalytic converters. [...] Read more.
Calcium phosphates are often used for biomedical applications. Hydroxyapatite, for example, has a wide range of applications because it mimics the mineral component of natural bone. Widespread interest in the catalytic properties of ceria is due to its use in automotive catalytic converters. Effect of electroless deposited on (non-anodized and anodized) Al 1050 with monolayer Ce2O3 + CeO2, consecutive deposited bilayer Ce2O3 + CeO2/Ca5(PO4)3OH or consecutive deposited bilayer Ce2O3 + CeO2/(AlPO4 + AlOOH + CePO4) systems on the indentation modulus (EIT) and hardness (HIT), as well as their corrosion-protective ability were investigated. For structural, chemical, electrochemical, and mechanical characterization of the investigated systems, the following methods were used: scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXS), X-ray photoelectron spectroscopy (XPS), polarization resistance (Rp), corrosion rate (CR) analysis, and nanoindentation. It was found that the HIT and EIT of the coatings deposited on an anodized aluminum substrate were much higher than those deposited on a non-anodized aluminum substrate. It established a specific influence of the morphology and chemical composition of formed conversion layers on HIT and EIT and improved the corrosion-protective effect of these layers. The obtained results are valuable since there is no data on the mechanical properties of such coatings in the literature to date. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

15 pages, 15801 KiB  
Article
The Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of Cold-Sprayed Zn-6Cu Deposits
by Xiao-Zhen Hu, Xiao-Bo Tan, Bin Xie, Hai-Long Yao, Chao Yang and Tao Zhou
Materials 2024, 17(24), 6096; https://doi.org/10.3390/ma17246096 - 13 Dec 2024
Viewed by 508
Abstract
To explore the feasibility of preparing Zn alloy bulk, Zn-6Cu deposit was prepared by cold-spraying additive manufacturing. Microstructure, tensile and wear behavior were investigated before and after heat treatment. Cold-sprayed Zn-6Cu deposit was constituted by irregular flattening particles and pores after heat treatment. [...] Read more.
To explore the feasibility of preparing Zn alloy bulk, Zn-6Cu deposit was prepared by cold-spraying additive manufacturing. Microstructure, tensile and wear behavior were investigated before and after heat treatment. Cold-sprayed Zn-6Cu deposit was constituted by irregular flattening particles and pores after heat treatment. Zn-6Cu deposits were composed of Zn and CuZn5 phases in addition to ZnO phase regardless of heat treatment, but the full width at half maximum of both the CuZn5 and the Zn phase were varied. The yield strength and ultimate tensile strength of Zn-6Cu deposits after post heat treatment were, respectively, increased from 83.8 ± 28.7 MPa and 159.6 ± 44.5 MPa to 89.4 ± 24.4 MPa and 223.8 ± 37.1 MPa. Fracture morphology after tensile testing exhibited main features of dimples, pores and cleaving particles. The friction coefficient and wear rate of Zn-6Cu deposits were increased after heat treatment, and the corrosive wear exhibited a lower friction coefficient and wear rate than the dry wear due to the lubricant of simulated body fluid. Grooves and localized delamination were the main wear features of Zn-6Cu deposits regardless of both the heat treatment and wear condition. This result indicates a potential application of cold-sprayed Zn-6Cu deposits comparable to the casting ones. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

18 pages, 14531 KiB  
Article
Oxidation Behavior of Aluminide Coatings on Cobalt-Based Superalloys by a Vapor Phase Aluminizing Process
by Kuo Ma, Cheng Xie, Yidi Li, Biaobiao Yang, Yuanyuan Jin, Hui Wang, Ziming Zeng, Yunping Li and Xianjue Ye
Materials 2024, 17(23), 5897; https://doi.org/10.3390/ma17235897 - 2 Dec 2024
Viewed by 757
Abstract
In this work, the oxidation behavior of an aluminide coating at 900, 1000, and 1100 °C was investigated. The aluminide coating was prepared on a cobalt-based superalloy using a vapor phase aluminizing process, which is composed of a β-(Co,Ni)Al phase outer layer and [...] Read more.
In this work, the oxidation behavior of an aluminide coating at 900, 1000, and 1100 °C was investigated. The aluminide coating was prepared on a cobalt-based superalloy using a vapor phase aluminizing process, which is composed of a β-(Co,Ni)Al phase outer layer and a Cr-rich phase diffusion layer. The experimental results showed that the oxidation of the coating at 900–1100 °C all obey the parabolic law. The oxidation rate constants of the coating were between 2.19 × 10−7 and 47.56 × 10−7 mg2·cm−4·s−1. The coating produced metastable θ-Al2O3 at 900 °C and stable α-Al2O3 at 1000 and 1100 °C. As the oxidation temperature increases, the formation of Al2O3 is promoted, consuming large amount of Al in the coating, resulting in the transformation from β-(Co,Ni)Al phase to α-(Co,Ni,Cr) phase. And the decrease in the β phase in the coating led to the dissolution of the diffusion layer. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

15 pages, 5848 KiB  
Article
Adhesion-Related Phenomena of Stellite 6 HVOF Sprayed Coating Deposited on Laser-Textured Substrates
by Žaneta Dlouhá, Josef Duliškovič, Marie Frank Netrvalová, Jana Naďová, Marek Vostřák, Sebastian Kraft, Udo Löschner, Jiří Martan and Šárka Houdková
Materials 2024, 17(20), 5069; https://doi.org/10.3390/ma17205069 - 17 Oct 2024
Viewed by 979
Abstract
The focus of this research is to examine the feasibility of using laser texturing as a method for surface preparation prior to thermal spraying. The experimental part includes the thermal spraying of a Stellite 6 coating by High Velocity Oxygen Fuel (HVOF) technology [...] Read more.
The focus of this research is to examine the feasibility of using laser texturing as a method for surface preparation prior to thermal spraying. The experimental part includes the thermal spraying of a Stellite 6 coating by High Velocity Oxygen Fuel (HVOF) technology on laser-textured substrates. The thermal spraying of this coating was deposited both on conventional substrate material (low carbon steel) and on substrates that had been previously heat treated (nitrided steel). The properties of the coatings were analysed using scanning electron microscopy (SEM), optical microscopy (OM) and Raman spectroscopy. Adhesion was assessed through a tensile adhesion test. The results showed the usability of laser texturing in the case of carbon steel, which was comparable or even better than traditional grit blasting. For nitrided steel, the problem remains with the hardness and brittleness of the nitrided layer, which allows for the propagation of brittle cracks near the interface and thus reduces the adhesion strength. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

16 pages, 6031 KiB  
Article
Corrosion of Chromium Coating Fabricated on Zircaloy-4 Substrate
by Florentina Golgovici, Diana Diniași, Paul Pavel Dincă, Bogdan Butoi and Ioana Demetrescu
Materials 2024, 17(18), 4445; https://doi.org/10.3390/ma17184445 - 10 Sep 2024
Viewed by 925
Abstract
In the nuclear industry, coated cladding is a topical problem and it is chosen as the near-term and most promising ATF (Accident-Tolerant Fuel) cladding concept. The main objective of this concept is to enhance the accident tolerance of nuclear power plants and accordingly, [...] Read more.
In the nuclear industry, coated cladding is a topical problem and it is chosen as the near-term and most promising ATF (Accident-Tolerant Fuel) cladding concept. The main objective of this concept is to enhance the accident tolerance of nuclear power plants and accordingly, the performance of cladding is expected to be improved. This work assesses the corrosion performance of a Zircalloy-4 alloy coated with a thin chromium coating by MS (magnetron sputtering), tested under a CANDU (CANada Deuterium Uranium) reactor primary circuit simulated condition (LiOH solution, 10 MPa, 310 °C, pH = 10.5). The anticorrosive performance is evaluated by a gravimetric analysis, a metallographic analysis, X-ray diffraction, electronic microscopy, and electrochemical methods. A four times less gain mass was noticed compared to uncoated Zircaloy-4, indicating a smaller corrosion rate. The SEM micrographs illustrate that the coatings are still adherent, and they are keeping the initial morphological characteristics during the autoclaving process. A SEM cross-section analysis shows values of the thickness of the coatings between 0.8 and 1.46 µm. By XRD, the presence of Cr2O3 oxide is identified. Electrochemical testing confirms good stability and good corrosion performance of Cr coating over time under autoclave conditions. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

15 pages, 6190 KiB  
Article
Electrochemical Behavior of Plasma-Nitrided Austenitic Stainless Steel in Chloride Solutions
by Viera Zatkalíková, Petra Drímalová, Katarzyna Balin, Martin Slezák and Lenka Markovičová
Materials 2024, 17(17), 4189; https://doi.org/10.3390/ma17174189 - 24 Aug 2024
Cited by 1 | Viewed by 1087
Abstract
The application possibilities of austenitic stainless steels in high friction, abrasion, and sliding wear conditions are limited by their inadequate hardness and tribological characteristics. In order to improve these properties, the thermochemical treatment of their surface by plasma nitriding is suitable. This article [...] Read more.
The application possibilities of austenitic stainless steels in high friction, abrasion, and sliding wear conditions are limited by their inadequate hardness and tribological characteristics. In order to improve these properties, the thermochemical treatment of their surface by plasma nitriding is suitable. This article is focused on the corrosion resistance of conventionally plasma-nitrided AISI 304 stainless steel (530 °C, 24 h) in 0.05 M and 0.5 M sodium chloride solutions at room temperature (20 ± 3 °C), tested by potentiodynamic polarization and electrochemical impedance spectroscopy. Optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are used for nitrided layer characterization. The experiment results confirmed the plasma-nitrided layer formation of increased micro-hardness related to the presence of Cr2N chromium nitrides and higher surface roughness compared to the as-received state. Both of the performed independent electrochemical corrosion tests point to a significant reduction in corrosion resistance after the performed plasma nitriding, even in a solution with a very low chloride concentration (0.05 mol/L). Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

19 pages, 5466 KiB  
Article
Characterization of Wear Resistance and Corrosion Resistance of Plasma Paste Borided Layers Produced on Pure Titanium
by Piotr Dziarski and Natalia Makuch
Materials 2024, 17(16), 3922; https://doi.org/10.3390/ma17163922 - 7 Aug 2024
Viewed by 1024
Abstract
Commercially pure titanium was plasma paste borided using various temperatures of the process. An increase in the boriding temperature resulted in an increase in the thickness of the borided layer. All the layers produced consisted of an outer compact TiB2 zone and [...] Read more.
Commercially pure titanium was plasma paste borided using various temperatures of the process. An increase in the boriding temperature resulted in an increase in the thickness of the borided layer. All the layers produced consisted of an outer compact TiB2 zone and an inner TiB zone in the form of whiskers penetrating into the substrate. The presence of hard titanium borides resulted in a significant increase in wear resistance compared to non-borided pure titanium. However, the thickness of the layer produced strongly influenced the wear behavior, in respect of the time required for complete destruction of the layer. Higher wear resistance was characteristic of the TiB2 layer due to its compact nature, whereas the specific morphology of TiB whiskers resulted in their lower wear resistance compared to the outer TiB2 layer. Plasma paste boriding of pure titanium also had an advantageous effect on corrosion resistance compared to non-borided pure titanium. Simultaneously, due to the higher thickness of TiB2 layer, the specimen borided at a higher temperature showed higher corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

19 pages, 9157 KiB  
Article
Effect of Countersample Coatings on the Friction Behaviour of DC01 Steel Sheets in Bending-under-Tension Friction Tests
by Tomasz Trzepieciński, Krzysztof Szwajka, Marek Szewczyk, Marek Barlak and Joanna Zielińska-Szwajka
Materials 2024, 17(15), 3631; https://doi.org/10.3390/ma17153631 - 23 Jul 2024
Cited by 2 | Viewed by 990
Abstract
The aim of this article is to provide an analysis of the influence of the type of hard anti-wear coatings on the friction behaviour of DC01 deep-drawing steel sheets. DC01 steel sheets exhibit high formability, and they are widely used in sheet metal [...] Read more.
The aim of this article is to provide an analysis of the influence of the type of hard anti-wear coatings on the friction behaviour of DC01 deep-drawing steel sheets. DC01 steel sheets exhibit high formability, and they are widely used in sheet metal forming operations. The tribological properties of the tool surface, especially the coating used, determine the friction conditions in sheet metal forming. In order to carry out the research, this study developed and manufactured a special bending-under-tension (BUT) friction tribometer that models the friction phenomenon on the rounded edges of tools in the deep-drawing process. The rationale for building the tribotester was that there are no commercial tribotesters available that can be used to model the phenomenon of friction on the rounded edges of tools in sheet forming processes. The influence of the type of coating and sheet deformation on the coefficient of friction (CoF) and the change in the topography of the sheet surface were analysed. Countersamples with surfaces prepared using titanium + nitrogen ion implantation, nitrogen ion implantation and electron beam remelting were tested. The tests were carried out in conditions of dry friction and lubrication with oils with different kinematic viscosities. Under dry friction conditions, a clear increase in the CoF value, with the elongation of the samples for all analysed types of countersamples, was observed. Under lubricated conditions, the uncoated countersample showed the most favourable friction conditions. Furthermore, oil with a lower viscosity provided more favourable conditions for reducing the coefficient of friction. Within the entire range of sample elongation, the most favourable conditions for reducing the CoF were provided by uncoated samples and lubrication with S100+ oil. During the friction process, the average roughness decreased as a result of flattening the phenomenon. Under dry friction conditions, the value of the Sa parameter during the BUT test decreased by 20.3–30.2%, depending on the type of countersample. As a result of the friction process, the kurtosis and skewness increased and decreased, respectively, compared to as-received sheet metal. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

21 pages, 19521 KiB  
Article
Ultrathin Carbon Textures Produced on Machined Surfaces in an Integrated Finishing Process Using Microabrasive Films
by Katarzyna Tandecka, Wojciech Kacalak, Michał Wieczorowski, Krzysztof Rokosz, Patrick Chapon and Thomas G. Mathia
Materials 2024, 17(14), 3456; https://doi.org/10.3390/ma17143456 - 12 Jul 2024
Cited by 6 | Viewed by 983
Abstract
This study presents research into the unique method of depositing carbon layers onto processed surfaces, during finishing with abrasive films, on a global basis. The authors of this article are holders of the patent for this method. What makes this technology outstanding is [...] Read more.
This study presents research into the unique method of depositing carbon layers onto processed surfaces, during finishing with abrasive films, on a global basis. The authors of this article are holders of the patent for this method. What makes this technology outstanding is that it integrates processes, whereby micro-finishing and the deposition of a carbon layer onto freshly exposed surface fragments is achieved simultaneously, in a single process. Among the main advantages accruable from this process is the reduction of surface irregularities, while the deposition of a carbon layer is achieved simultaneously. Ultrathin graphite layers can be widely used in conditions where other methods of reducing the coefficient of friction are not possible, such as in regard to micromechanisms. This article illustrates the application of carbon coating, end on, on a surface processed with abrasive film, containing intergranular spaces, saturated with graphite. Thin carbon layers were obtained on two substrates that did not contain carbon in their initial composition: soda–lime glass and a tin–bronze alloy. It was performed through microscopic examinations of the produced surface, roughness analyses of these surfaces, and analysis of the chemical compositions determined by two methods, namely EDS and GDOES, proving the existence of the coatings. The aim of this paper is to prove the possibility and efficiency of using graphite-impregnated lapping films in the deposition process of carbon films, with improved surface smoothness, durability, and wear resistance. The produced coatings will be tested in regard to their operational properties in further research. The authors underline the potential of this method to revolutionize surface treatment processes, due to the significant advantages it offers across various industries. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

15 pages, 12716 KiB  
Article
Microstructure and Erosion Wear of In Situ TiC-Reinforced Co-Cr-W-C (Stellite 6) Laser-Cladded Coatings
by Jacek Górka, Tomasz Poloczek, Damian Janicki, Aleksandra Lont, Sławomir Topór, Marcin Żuk and Agnieszka Rzeźnikiewicz
Materials 2024, 17(13), 3101; https://doi.org/10.3390/ma17133101 - 25 Jun 2024
Cited by 6 | Viewed by 979
Abstract
The article presents research results on the possibility of shaping the structure and properties of Co-Cr-W-C-Ti alloys (type Stellite 6) using laser cladding technology. Cobalt-based alloys are used in several industries because they are characterized by high erosion, abrasion, and corrosion resistance, retaining [...] Read more.
The article presents research results on the possibility of shaping the structure and properties of Co-Cr-W-C-Ti alloys (type Stellite 6) using laser cladding technology. Cobalt-based alloys are used in several industries because they are characterized by high erosion, abrasion, and corrosion resistance, retaining these properties at high temperatures. To further increase erosion resistance, it seems appropriate to reinforce material by in situ synthesis of hard phases. Among the transition metal carbides (TMCs), titanium carbide is one of the hardest and can have a positive effect on the extension of the lifetime of components made from cobalt-based alloys. In this article, concentration of C, W, and Ti due to the possibility of in situ synthesis of titanium carbides was subjected to detailed analysis. The provided research includes macrostructure and microstructure analysis, X-ray diffraction (XRD), microhardness, and penetrant tests. It was found that the optimal concentrations of Ti and C in the Co-Cr-W-C alloy allow the formation of titanium carbides, which significantly improves erosion resistance for low impact angles. Depending on the concentrations of titanium, carbon, and tungsten in the molten metal pool, it is possible to shape the alloy structure by influencing to morphology and size of the reinforcing phase in the form of the complex carbide (Ti,W)C. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

16 pages, 10059 KiB  
Article
Increasing the Working Time of Forging Tools Used in the Industrial Process of Producing a Disk-Type Forging Assigned for a Gearbox through the Application of Hybrid Layers
by Marek Hawryluk, Łukasz Dudkiewicz, Jacek Borowski, Jan Marzec and Roger Tkocz
Materials 2024, 17(12), 3005; https://doi.org/10.3390/ma17123005 - 19 Jun 2024
Viewed by 1111
Abstract
The article discusses the phenomena and destructive mechanisms occurring on the surface of 1.2344 steel dies used during the hot forging of disc-type forgings. Preliminary research has shown that gas nitriding alone, used so far, is insufficient due to the occurrence of destructive [...] Read more.
The article discusses the phenomena and destructive mechanisms occurring on the surface of 1.2344 steel dies used during the hot forging of disc-type forgings. Preliminary research has shown that gas nitriding alone, used so far, is insufficient due to the occurrence of destructive mechanisms other than abrasive wear, such as thermal and thermomechanical fatigue, which cause the average durability of such tools to be approximately 5000 forgings. Analyses were also carried out to assess the load on forging tools using numerical modeling (Forge 3.0NxT), which confirmed the occurrence of large and cyclically changing thermal and mechanical loads during the forging process. Therefore, in order to increase operational durability, it was decided to use two types of hybrid layers, differing in the PVD coating used: TiCrAlN and CrN, and then subjected to gas nitriding (GN). The obtained results showed that, depending on the area of the tool and the current working conditions, the applied PVD coatings protect the surface layer of the tool against the dominant destructive mechanisms. In both cases, the strength increased to the level of 7000 forgings, the tools could continue to work, and globally, slightly better results were obtained for the GN+TiCrAlN layer. The CrN-type layer protects the tool more against thermal fatigue, while the TiCrAlN layer is more resistant to abrasive wear. In areas where the hybrid layer was worn, a decrease in hardness was observed from 1300 HV to 600–700 HV, and in places of intense material flow (front—point 2 and tool bridge—point 9) the hardness dropped to below 400 HV, which may indicate local tempering of the material. Moreover, the research has shown that each process and tool should be analyzed individually, and the areas in the tool where particular destructive mechanisms dominate should be identified, so as to further protect the forging tool by using appropriate protective coatings in these areas. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

20 pages, 4939 KiB  
Article
Wear Rate, Tribo-Corrosion, and Plastic Deformation Values of Co-Cr-Mo Alloy in Ringer Lactate Solution
by Raimundo Nonato Alves Silva, Rui Neto, Angela Vieira, Priscila Leite, Polyana Radi, Carolina Hahn da Silveira, M. D. Santos, Filomena Viana and Lúcia Vieira
Materials 2024, 17(10), 2327; https://doi.org/10.3390/ma17102327 - 14 May 2024
Cited by 1 | Viewed by 1283
Abstract
This study investigates the tribocorrosion performance of a cast Co-Cr-Mo alloy prepared using casting and electromagnetic stirring (EMS) at specific frequencies. The tribocorrosion behaviour of the alloy was evaluated when exposed to Ringer’s lactate solution to optimize the EMS parameters and improve its [...] Read more.
This study investigates the tribocorrosion performance of a cast Co-Cr-Mo alloy prepared using casting and electromagnetic stirring (EMS) at specific frequencies. The tribocorrosion behaviour of the alloy was evaluated when exposed to Ringer’s lactate solution to optimize the EMS parameters and improve its properties. The research focuses on biomedical implant applications and explores how EMS affects alloy wear and corrosion resistance. As did the friction coefficient and wear volume, the wear rate of samples produced with EMS frequencies of 75 Hz and 150 Hz decreased. These improvements are attributed to the ability of EMS to refine grain size and homogenize the microstructure, thereby increasing the resistance to tribocorrosion. Techniques such as scanning electron microscopy (SEM) and profilometry were used for surface and wear analysis, while mechanical properties were evaluated through instrumented indentation tests. The findings confirm that EMS improves the alloy’s durability and tribocorrosion resistance, making it highly suitable for demanding biomedical applications such as joint replacements. This highlights the importance of advanced manufacturing techniques in optimizing biomedical alloys for simulated body conditions. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

21 pages, 8416 KiB  
Article
Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants
by Anna E. Tsai and Kyriakos Komvopoulos
Materials 2024, 17(10), 2324; https://doi.org/10.3390/ma17102324 - 14 May 2024
Viewed by 1377
Abstract
The antiwear properties of tribofilms formed on steel surfaces lubricated with various multi-component lubricants were investigated at an elevated temperature and under load-speed conditions conducive to sliding in the boundary lubrication regime. The lubricants contained base oil, reduced-level (secondary) zinc dialkyl dithiophosphate (ZDDP), [...] Read more.
The antiwear properties of tribofilms formed on steel surfaces lubricated with various multi-component lubricants were investigated at an elevated temperature and under load-speed conditions conducive to sliding in the boundary lubrication regime. The lubricants contained base oil, reduced-level (secondary) zinc dialkyl dithiophosphate (ZDDP), and nitrogenous dispersant. The wear resistance of the tribofilms produced from different oil blends was evaluated in the context of the rate of change in the sliding track volume (wear rate for material loss) and the load-bearing capacity, chemical composition, and thickness of the tribofilms. Surface profilometry and scanning electron microscopy were used to quantify the wear performance and detect the prevailing wear mechanisms, whereas X-ray photoelectron spectroscopy elucidated the chemical composition and thickness of the tribofilms. The oil blends without ZDDP did not produce tribofilms with adequate antiwear properties, whereas the oil blends containing ZDDP and dispersant generated tribofilms with antiwear characteristics comparable to those of tribofilms produced from blends with a higher ZDDP content. Although dispersants can suspend oil contaminants and preserve the cleanness of the sliding surfaces, it was found that they can also reduce the antiwear efficacy of ZDDP. This was attributed to an additive-dispersant antagonistic behavior for surface adsorption sites affecting tribofilm chemistry and mechanical properties. Among the blends containing a mixture of ZDDP and dispersant, the best antiwear properties were demonstrated by the tribofilm produced from the blend consisting of base oil, 0.05 wt% ZDDP, and a bis-succinimide dispersant treated with ethylene carbonate. The findings of this investigation demonstrate the potential of multi-component lubricants with reduced-content ZDDP and nitrogen-based dispersant to form effective antiwear tribofilms. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Graphical abstract

15 pages, 9466 KiB  
Article
Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters
by Klaudia Malisz, Beata Świeczko-Żurek, Jean-Marc Olive, Grzegorz Gajowiec, Gilles Pecastaings, Aleksandra Laska and Alina Sionkowska
Materials 2024, 17(10), 2242; https://doi.org/10.3390/ma17102242 - 10 May 2024
Cited by 4 | Viewed by 1357
Abstract
The aim of the work is to compare the properties of nanohydroxyapatite coatings obtained using the electrophoretic deposition method (EDP) at 10 V, 20 V, and 30 V, and with deposit times of 2 and 5 min. The primary sedimentation was used to [...] Read more.
The aim of the work is to compare the properties of nanohydroxyapatite coatings obtained using the electrophoretic deposition method (EDP) at 10 V, 20 V, and 30 V, and with deposit times of 2 and 5 min. The primary sedimentation was used to minimize the risk of the formation of particle agglomerates on the sample surface. Evaluation of the coating was performed by using a Scanning Electron Microscope (SEM), Energy-Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), optical profilometer, drop shape analyzer, and a nanoscratch tester. All of the coatings are homogeneous without any agglomerates. When low voltage (10 V) was used, the coatings were uniform and continuous regardless of the deposition time. The increase in voltage resulted in the formation of cracks in the coatings. The wettability test shows the hydrophilic behavior of the coatings and the mean contact angle values are in the range of 20–37°. The coatings showed excellent adhesion to the substrate. The application of a maximum force of 400 mN did not cause delamination in most coatings. It is concluded that the optimal coating for orthopedic implants (such as hip joint implants, knee joint implants or facial elements) is obtained at 10 V and 5 min because of its homogeneity, and a contact angle that promotes osseointegration and great adhesion to the substrate. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

16 pages, 12831 KiB  
Article
Electrochemical Characterization of Electrodeposited Copper in Amine CO2 Capture Media
by Corentin Penot, Kranthi Kumar Maniam and Shiladitya Paul
Materials 2024, 17(8), 1825; https://doi.org/10.3390/ma17081825 - 16 Apr 2024
Viewed by 1263
Abstract
This study explores the stability of electrodeposited copper catalysts utilized in electrochemical CO2 reduction (ECR) across various amine media. The focus is on understanding the influence of different amine types, corrosion ramifications, and the efficacy of pulse ECR methodologies. Employing a suite [...] Read more.
This study explores the stability of electrodeposited copper catalysts utilized in electrochemical CO2 reduction (ECR) across various amine media. The focus is on understanding the influence of different amine types, corrosion ramifications, and the efficacy of pulse ECR methodologies. Employing a suite of electrochemical techniques including potentiodynamic polarization, linear resistance polarization, cyclic voltammetry, and chronopotentiometry, the investigation reveals useful insights. The findings show that among the tested amines, CO2-rich monoethanolamine (MEA) exhibits the highest corrosion rate. However, in most cases, the rates remain within tolerable limits for ECR operations. Primary amines, notably monoethanolamine (MEA), show enhanced compatibility with ECR processes, attributable to their resistance against carbonate salt precipitation and sustained stability over extended durations. Conversely, tertiary amines such as methyldiethanolamine (MDEA) present challenges due to the formation of carbonate salts during ECR, impeding their effective utilization. This study highlights the effectiveness of pulse ECR strategies in stabilizing ECR. A noticeable shift in cathodic potential and reduced deposit formation on the catalyst surface through periodic oxidation underscores the efficacy of such strategies. These findings offer insights for optimizing ECR in amine media, thereby providing promising pathways for advancements in CO2 emission reduction technologies. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

14 pages, 28820 KiB  
Article
Research on Coated Tool Life and Wear in Ta-2.5W Alloy Turning
by Bo Hu, Zhengqing Liu, Yang Wu, Qiucheng Wang and Dayu Shu
Materials 2024, 17(7), 1481; https://doi.org/10.3390/ma17071481 - 24 Mar 2024
Cited by 1 | Viewed by 1337
Abstract
Due to its inherent high hardness, strength, and plasticity, tantalum–tungsten (Ta-W) alloy poses a considerable challenge in machining, resulting in pronounced tool wear, diminished tool lifespan, and suboptimal surface quality. This study undertook experiments utilizing uncoated carbide tools, TiAlN-coated carbide tools, and AlTiN-coated [...] Read more.
Due to its inherent high hardness, strength, and plasticity, tantalum–tungsten (Ta-W) alloy poses a considerable challenge in machining, resulting in pronounced tool wear, diminished tool lifespan, and suboptimal surface quality. This study undertook experiments utilizing uncoated carbide tools, TiAlN-coated carbide tools, and AlTiN-coated carbide tools for machining Ta-2.5W alloy. The investigation delved into the intricacies of surface temperature, tool longevity, and the distinctive wear characteristics under varying coating materials and cutting parameters. Concurrently, a comprehensive exploration of the wear mechanisms affecting the tools was conducted. Among the observed wear modes, flank wear emerged as the predominant issue for turning tools. Across all three tool types, adhesive wear and diffusion wear were identified as the principal wear mechanisms, with the TiAlN-coated tools displaying a reduced level of wear compared to their AlTiN-coated counterparts. The experimental findings conclusively revealed that TiAlN-coated carbide tools exhibited an extended tool lifespan in comparison to uncoated carbide tools and AlTiN-coated carbide tools, signifying superior cutting performance. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Graphical abstract

16 pages, 4961 KiB  
Article
Improving the Surface Quality and Tribological Characteristics of 3D-Printed Titanium Parts through Reactive Electro-Spark Deposition
by Georgi Kostadinov, Todor Penyashki, Antonio Nikolov and Aleksandar Vencl
Materials 2024, 17(2), 382; https://doi.org/10.3390/ma17020382 - 12 Jan 2024
Cited by 6 | Viewed by 1268
Abstract
This work presents the results of research conducted with an aim to improve the surface quality, hardness and wear resistance of titanium alloy Ti6Al4V, obtained via the laser powder bed fusion of metals (PBF-LB/M) process of additive manufacturing (AM) known as the 3D [...] Read more.
This work presents the results of research conducted with an aim to improve the surface quality, hardness and wear resistance of titanium alloy Ti6Al4V, obtained via the laser powder bed fusion of metals (PBF-LB/M) process of additive manufacturing (AM) known as the 3D printing of metals. The 3D surfaces were coated via reactive electrospark deposition (RESD) with low-pulse energy and electrode materials of low-melting metals and multi-component hard alloys. The relationship between the electrical parameters of the RESD process and the quality, composition, structure, microhardness and wear resistance of the treated surfaces were investigated and analysed. It was found that the roughness and thickness of the resulting surface layers could be changed by changing the RESD modes within the limits of 2.5–5 µm and 8–20 µm, respectively. RESD processing allowed us to achieve two to five times lower roughness than that of titanium AM surfaces. The microhardness and wear resistance of the RESD surfaces are two to four times higher than those of the titanium substrate. Possibilities for the purposeful synthesis of new wear-resistant phases and compounds and for obtaining surface layers with predetermined thickness and roughness were established. It was shown that the subsequent reaction’s electrospark processing helped to simultaneously reduce the roughness and increase the hardness and wear resistance of the modified surfaces, and can be successfully used instead of the material-energy-labour and machine-intensive finishing treatments of the titanium surfaces obtained after 3D printing. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

12 pages, 3871 KiB  
Article
Testing for Abrasion Resistance of WC-Co Composites for Blades Used in Wood-Based Material Processing
by Joanna Wachowicz, Joanna Fik, Zbigniew Bałaga and Grzegorz Stradomski
Materials 2023, 16(17), 5836; https://doi.org/10.3390/ma16175836 - 25 Aug 2023
Cited by 3 | Viewed by 1082
Abstract
Commonly used tool materials for machining wood-based materials are WC-Co carbides. Although they have been known for a long time, there is still much development in the field of sintered tool materials, especially WC-Co carbides and superhard materials. The use of new manufacturing [...] Read more.
Commonly used tool materials for machining wood-based materials are WC-Co carbides. Although they have been known for a long time, there is still much development in the field of sintered tool materials, especially WC-Co carbides and superhard materials. The use of new manufacturing methods (such as FAST—field-assisted sintering technology), which use pulses of electric current for heating, can improve the properties of the materials used for cutting tools, thereby increasing the cost-effectiveness of machining. The ability to increase tool life without the downtime associated with tool wear allows significant cost savings, particularly in mass production. This paper presents the results of a study of the effect of grain size and cobalt content of carbide tool sinters on the tribological properties of the materials studied. The powders used for consolidation were characterised by irregular shape and formed agglomerates of different sizes. Tribological tests were carried out using the T-01 (ball-on-disc) method. In order to determine the wear kinetics, the entire friction path was divided into 15 cycles of 200 m and the weight loss was measured after each stage. In order to determine the mechanism and intensity of wear of the tested materials under technically dry friction conditions, the surface of the tested sinters was observed before the test and after 5, 10, and 15 cycles. The conclusions of the study indicate that the predominant effect of surface cooperation at the friction node is abrasion due to the material chipping that occurs during the process. The results confirm the influence of sintered grain size and cobalt content on durability. In the context of the application of the materials in question for cutting tools, it can be pointed out that sintered WC(0.4)_4 has the highest potential for use in the manufacture of cutting tools. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 8121 KiB  
Review
Research Progress on the Wear Resistance of Key Components in Agricultural Machinery
by Ying Wang, Dong Li, Cheng Nie, Pan Gong, Junsheng Yang, Zhigang Hu, Bin Li and Ming Ma
Materials 2023, 16(24), 7646; https://doi.org/10.3390/ma16247646 - 14 Dec 2023
Cited by 12 | Viewed by 3547
Abstract
Agricultural mechanization is crucial in enhancing production efficiency, alleviating labor demands, reducing costs, improving agricultural product quality, and promoting sustainable development. However, wear and tear are inevitable when using agricultural machinery. The failure of critical wear-resistant parts is responsible for over 50% of [...] Read more.
Agricultural mechanization is crucial in enhancing production efficiency, alleviating labor demands, reducing costs, improving agricultural product quality, and promoting sustainable development. However, wear and tear are inevitable when using agricultural machinery. The failure of critical wear-resistant parts is responsible for over 50% of rural machinery breakdowns. For instance, a domestic combine harvester typically only operates trouble-free for 20 to 30 h, and the service life of a rotary plow knife is approximately 80 h. Investigating the wear performance of key farm machinery components reinforces machinery design and maintenance strategies, extends machinery lifespans, enhances agricultural production efficiency, and advances agrarian sustainability. This paper provides a comprehensive overview of the latest research on the wear resistance of crucial agricultural machinery components. It delves into the factors influencing the wear resistance of these components and explores current effective measures to address wear-related issues. Additionally, it also summarizes the challenges and opportunities in researching the wear performance of key components in agricultural machinery and future development directions. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

Back to TopTop