Molecular Magnetism: A Themed Issue in Honor of Professor Dai-Zheng Liao on the Occasion of His 85th Birthday

A special issue of Magnetochemistry (ISSN 2312-7481). This special issue belongs to the section "Molecular Magnetism".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 5103

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemistry, Key Laboratory of Advanced Energy Materia Chemistry, and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
Interests: coordination chemistry; molecule-based materials

E-Mail Website
Guest Editor
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Interests: coordination chemistry; molecule-based magnets; spin frustration; electron spin qubits

E-Mail Website
Guest Editor
Department of Chemistry, Tsinghua University, Beijing 100084, China
Interests: coordination chemistry; molecule-based magnets; multifunctional materials; structural chemistry

E-Mail Website
Guest Editor
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Interests: lanthanide coordination chemistry; molecular magnetism

Special Issue Information

Dear Colleagues,

Magnetochemistry is proud to present a Special Issue dedicated to celebrating the remarkable contributions of Professor Dai-Zheng Liao on the occasion of his 85th birthday. As a distinguished chemist from Nankai University, Professor Liao has been a pioneer in introducing and advancing the field of molecular magnetism research in China.

Professor Dai-Zheng Liao was born in 1939 in Fujian, China. He graduated from the Chemistry Department of Fudan University in 1962, and then, he worked in the Chemistry Department of Nankai University as an Assistant from 1962 to 1979. Later, he was promoted to Lecturer in 1979, Associate Professor in 1983, and Full Professor in 1990 at Nankai University. From 1985 to 1986, he was a Visiting Professor at Kyushu University in Japan. He won the second prize of National Natural Science Award of China for the project "Foundational studies on molecular magnetism" in 2003. During his long research career, he supervised dozens of master's and doctoral students and published more than 700 scientific papers in peer-reviewed journals until his retirement in 2009.

The field of molecular magnetism is rapidly advancing across chemistry, physics, and nanotechnology. Researchers have developed a diverse array of molecule-based magnetic materials, including molecular compounds, macromolecular polymers, supramolecular structures, and more, each exhibiting unique magnetic properties. In addition, studies have expanded to multifunctional molecular materials that not only possess magnetic properties but also exhibit properties such as ferroelectricity, dielectric behavior, molecular conductivity, superconductivity, stimuli responsiveness, porosity, chirality, etc.

This Special Issue of Magnetochemistry invites contributions that encompass both fundamental and theoretical aspects of molecule-based (multifunctional) magnetic materials and their diverse applications. We welcome original research articles and reviews that align with the key topics listed in the keywords.

Prof. Dr. Peng Cheng
Prof. Dr. You Song
Prof. Dr. Hui-Zhong Kou
Prof. Dr. Jinkui Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Magnetochemistry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coordination chemistry
  • crystal engineering
  • molecular magnetism
  • multifunctional materials (magnetism, ferroelectrics, dielectrics, conductivity, luminescence)
  • theoretical calculation
  • molecular spintronics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

9 pages, 1986 KiB  
Article
Multifunctional Synergistic Response Induced by Phase Transition in Molecular Compounds
by Xiao-Feng Chen, Tao Wang, Dan Liao, Nan Wu, Yan Peng, Shi-Yong Zhang and Zhao-Bo Hu
Magnetochemistry 2025, 11(5), 41; https://doi.org/10.3390/magnetochemistry11050041 - 9 May 2025
Viewed by 188
Abstract
Two organic–inorganic materials (TMAA)2[CoCl4] (1) and (TMAA)2[MnCl4] (2) (TMAA = N,N,N-trimethyl-1-adamantylammonium hydroxide) were synthesized and characterized. It was found that both compounds exhibit first-order structural phase transition at high-temperature regions. As [...] Read more.
Two organic–inorganic materials (TMAA)2[CoCl4] (1) and (TMAA)2[MnCl4] (2) (TMAA = N,N,N-trimethyl-1-adamantylammonium hydroxide) were synthesized and characterized. It was found that both compounds exhibit first-order structural phase transition at high-temperature regions. As the temperature approaches the phase transition point, significant abnormal changes were observed in the dielectric properties and χMT values of compounds 1 and 2. This phenomenon strongly highlights the dielectric bistable and spin bistable properties of compounds 1 and 2. Further research shows that the dielectric constants of the compounds undergo significant changes upon the application of an external magnetic field, providing strong evidence for the existence of magnetic–dielectric coupling effects within compounds 1 and 2. Full article
Show Figures

Figure 1

13 pages, 4778 KiB  
Article
Synthesis, X-Ray Crystal Structures, and Magnetic Properties of a Series of Trinuclear Rare-Earth Hepta-Chloride Clusters
by Yingying Pan, You-Song Ding, Lei Li and Zhiping Zheng
Magnetochemistry 2025, 11(5), 38; https://doi.org/10.3390/magnetochemistry11050038 - 2 May 2025
Viewed by 299
Abstract
Organometallic rare-earth complexes have attracted considerable attention in recent years due to their unique structures and exceptional magnetic properties. In this study, we report the synthesis and magnetic characteristics of a family of monopentamethylcyclopentadienyl-coordinated trinuclear rare-earth hepta-chloride clusters [(Li(THF)(Et2O))(Cp*RE) [...] Read more.
Organometallic rare-earth complexes have attracted considerable attention in recent years due to their unique structures and exceptional magnetic properties. In this study, we report the synthesis and magnetic characteristics of a family of monopentamethylcyclopentadienyl-coordinated trinuclear rare-earth hepta-chloride clusters [(Li(THF)(Et2O))(Cp*RE)3(μ-Cl)4(μ3-Cl)2(μ4-Cl)] (RE3: RE =Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp* = pentamethylcyclopentadienide). These clusters were synthesized by reacting LiCp* with RECl3 in a 1:1 molar ratio within a mixed solvent system (THF: Et2O = 1:9), resulting in high solubility in common organic solvents such as DCM, THF, and Et2O. Magnetic studies conducted on these paramagnetic clusters reveal the coexistence of ferromagnetic and antiferromagnetic superexchange interactions in Gd3. Additionally, Dy3 exhibits both ferromagnetic and antiferromagnetic intramolecular dipolar interactions. Notably, slow magnetic relaxation was observed in Dy3 below 23 K under a zero DC applied field with an energy barrier of 125(6) cm−1. Full article
Show Figures

Figure 1

9 pages, 2043 KiB  
Article
Magnetic Relaxation in a Heterolanthanide Binuclear Complex Involving a Nitronyl Nitroxide Biradical
by Yan Zhou, Junfang Xie, Chaoyi Jin, Yue Ma and Licun Li
Magnetochemistry 2025, 11(4), 26; https://doi.org/10.3390/magnetochemistry11040026 - 31 Mar 2025
Viewed by 320
Abstract
The reaction of nitronyl nitroxide biradical NITPhMeImbis(5-(2-methylimidazole)-1,3-bis(1′-oxyl-3′-oxido-4′,4′,5′,5′-tetramethyl-4,5-hydro-1H-imidazol-2-yl)-benzene) with Dy(hfac)3 and La(hfac)3 (hfac = hexafluoroacetylacetonate) afforded a heterolanthanide complex [Dy0.56La1.44(hfac)7(NITPhMeImbisH)] (1). In this complex, the biradical NITPhMeImbis ligand chelates one Ln(III) ion [...] Read more.
The reaction of nitronyl nitroxide biradical NITPhMeImbis(5-(2-methylimidazole)-1,3-bis(1′-oxyl-3′-oxido-4′,4′,5′,5′-tetramethyl-4,5-hydro-1H-imidazol-2-yl)-benzene) with Dy(hfac)3 and La(hfac)3 (hfac = hexafluoroacetylacetonate) afforded a heterolanthanide complex [Dy0.56La1.44(hfac)7(NITPhMeImbisH)] (1). In this complex, the biradical NITPhMeImbis ligand chelates one Ln(III) ion via its two neighboring NO units and simultaneously binds the La(III) ion through another NO group to form a dinuclear structure. Direct current (dc) magnetic measurement shows the dominant ferromagnetic couplings in Complex 1. Spin dynamics studies exhibit visible frequency-dependent peaks of χ″ signals under a dc field evidenced by field-induced magnetic relaxation behavior, which is a combination of Orbach and QTM processes, giving the Ueff, τ0 and τQTM values of 15.14 K, 3.04 × 10−7 s and 3.61 × 10−4 s, respectively. Full article
Show Figures

Graphical abstract

12 pages, 5695 KiB  
Article
An Organic–Inorganic Hybrid Semiconducting Quantum Spin Liquid Candidate: (BEDT-TTF)3[Cu2(μ-C2O4)3·CH3CH2OH·1.2H2O]
by Bin Zhang, Yan Zhang, Dongwei Wang, Zheming Wang, Guangcai Chang, Zengqiang Gao, Yanjun Guo, Fen Liu, Zhijuan Zhao, Xiaoyu Zhang, Baolong Qu, Peng Xu, Jiaou Wang, Fenliang Dong, Tongling Liang, Yang Sun, Deliang Yang, Qiaolian Li, Xiaofei Luo, Rongjuan Feng, Mei Liu and Xueying Zhangadd Show full author list remove Hide full author list
Magnetochemistry 2025, 11(2), 12; https://doi.org/10.3390/magnetochemistry11020012 - 12 Feb 2025
Viewed by 733
Abstract
The organic–inorganic hybrid (BEDT-TTF)3[Cu2(μ-C2O4)3·CH3CH2OH·1.2H2O] (I) was obtained using the electrocrystallization method. It comprises a θ21-phase organic donor layer and a two-dimensional inorganic antiferromagnetic [...] Read more.
The organic–inorganic hybrid (BEDT-TTF)3[Cu2(μ-C2O4)3·CH3CH2OH·1.2H2O] (I) was obtained using the electrocrystallization method. It comprises a θ21-phase organic donor layer and a two-dimensional inorganic antiferromagnetic honeycomb lattice. Cu(II) is octahedrally coordinated by three bisbidenetate oxalates, exhibiting Jahn–Teller distortion. CH3CH2OH and H2O molecules are located within the cavities of the honeycomb lattice. The total formal charge of the three donor molecules was assigned to be +2 based on the bond lengths in the TTF core, which corresponded to the Raman spectra. It is a semiconductor with σrt = 0.04 S/cm and Eα = 40 meV. No long-range ordering was observed above 2 K from zero-field cooling/field cooling magnetization, as confirmed by specific heat measurements. The spin frustration with f > 10 from the antiferromagnetic copper-oxalate-framework was observed. It is a candidate quantum spin liquid. Full article
Show Figures

Figure 1

11 pages, 10123 KiB  
Article
Magnetic Anisotropy and Slow Magnetic Relaxation in Two Mononuclear Octahedral Cobalt(II) Complexes
by Hui-Hui Cui, Dou-Zun Wang, Shixiang Li, Leixin Wang, Xinrui Yu, Xiancong Liu, Jin Wang, Miao Wang and Yanfeng Tang
Magnetochemistry 2025, 11(2), 11; https://doi.org/10.3390/magnetochemistry11020011 - 11 Feb 2025
Viewed by 598
Abstract
Two mononuclear octahedral Co(II) complexes, [Co(L)X2] (L = 1-(prop-2-en-1-yl)-1H-imidazole, X = NCS (1) and NCSe (2)), have been synthesized and characterized. The central Co(II) ions in two complexes adopt an octahedral geometry, coordinated [...] Read more.
Two mononuclear octahedral Co(II) complexes, [Co(L)X2] (L = 1-(prop-2-en-1-yl)-1H-imidazole, X = NCS (1) and NCSe (2)), have been synthesized and characterized. The central Co(II) ions in two complexes adopt an octahedral geometry, coordinated by four N atoms from the ligand and two N atoms from the anion. Direct-current magnetic data revealed large easy-plane magnetic anisotropy in both 1 and 2. Dynamic magnetic measurements demonstrated that 1 and 2 display field-induced slow magnetic relaxation. For 1 and 2, the Raman mechanism is found to the dominant process in the whole temperature range. Compared to 1, the magnetic relaxation of 2 is faster, likely due to the presence of the hydrogen bonding system in 2. Full article
Show Figures

Figure 1

11 pages, 2452 KiB  
Article
Positive and Negative Exchange Bias in N-, P- and Q-Type Ferri-Magnets of Niccolite Metal Formates [CH3NH2CH3]n[CrIII1−xFeIIIxFeII(HCO2)6]n
by Yu Zhou, Zhaoquan Yao, Na Li, Fuchen Liu, Jiongpeng Zhao and Xianhe Bu
Magnetochemistry 2025, 11(2), 10; https://doi.org/10.3390/magnetochemistry11020010 - 11 Feb 2025
Viewed by 557
Abstract
Exchange bias (EB) materials, whose magnetization curve can shift along the field axis after field cooling, have attracted tremendous attention and play a crucial role in the development of fundamental physics as well as practical applications of magnetization storage. In this work, the [...] Read more.
Exchange bias (EB) materials, whose magnetization curve can shift along the field axis after field cooling, have attracted tremendous attention and play a crucial role in the development of fundamental physics as well as practical applications of magnetization storage. In this work, the N-, P-, and Q-type ferrimagnets of Néel’s notation were realized in mixed valence metal formates [CH3NH2CH3]n[CrIII1−xFeIIIxFeII(HCO2)6]n by altering x, respectively. The positive and negative EB was found in N- and P-type ferrimagnets. The exchange anisotropy originates from the antiferromagnetic exchange interaction between the uncompensated spin of the host ferrimagnetic lattice and the pinned compensated spin of the antiferromagnetic clusters as a guest, which is rooted in the valence disorder of the iron ions. Full article
Show Figures

Figure 1

15 pages, 3433 KiB  
Article
Comprehensively Understanding the Transformation of Paramagnetic Tetramer to Spin-Paired Dimer in an S = ½ Molecular Crystal
by Yin Qian, Yan Gao, Lei Xu, Reinhard K. Kremer, Jin Zhang and Xiao-Ming Ren
Magnetochemistry 2025, 11(2), 8; https://doi.org/10.3390/magnetochemistry11020008 - 24 Jan 2025
Viewed by 953
Abstract
In this study, we comparatively analyzed the variable-temperature crystal structures for two isomorphous salts, [1-benzyl-4-aminopyridinium][M(mnt)2] (M = Ni or Cu; mnt2− = maleonitriledithiolate; labeled as APy-Ni or APy-Cu). Both salts crystallize in the triclinic P–1 space group at [...] Read more.
In this study, we comparatively analyzed the variable-temperature crystal structures for two isomorphous salts, [1-benzyl-4-aminopyridinium][M(mnt)2] (M = Ni or Cu; mnt2− = maleonitriledithiolate; labeled as APy-Ni or APy-Cu). Both salts crystallize in the triclinic P–1 space group at 296 K, comprising linear [M(mnt)2] (M = Ni or Cu) tetramers. A magnetostructural phase transition occurs at TC~190 K in S = ½ APy-Ni at ambient pressure, with a conversion of paramagnetic tetramers into nonmagnetic spin-paired dimers. The discontinuous alteration of cell parameters at TC signifies the characteristic of first-order phase transition in APy-Ni. No such transition appears in the nonmagnetic APy-Cu within the same temperature vicinity, demonstrating the magnetic interactions promoting the structural phase transition in APy-Ni, which is further reinforced through a comparison of the lattice formation energy between APy-Ni and APy-Cu. The phase transition may bear a resemblance to the mechanisms typically observed in spin-Peierls systems. We further explored the magnetic and phase transition properties of APy-Ni under varying pressures. Significantly, TC shows a linear increase with rising pressure within the range of 0.003–0.88 GPa, with a rate of 90 K GPa−1, manifesting that the applied pressure promotes the transition from tetramer to dimer. Full article
Show Figures

Figure 1

13 pages, 2867 KiB  
Article
Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation
by Yu-Xi Wang, Yu-Fei Wang and Bing Yin
Magnetochemistry 2025, 11(1), 3; https://doi.org/10.3390/magnetochemistry11010003 - 7 Jan 2025
Cited by 1 | Viewed by 983
Abstract
A theoretical study, based on ab initio electronic structure calculation, is performed in a group of 16 pentacoordinate Dy-SIMs. Theoretical results provide a reasonable explanation of the observed SMM performance based on a concise criterion, i.e., the co-existence of long τQTM and [...] Read more.
A theoretical study, based on ab initio electronic structure calculation, is performed in a group of 16 pentacoordinate Dy-SIMs. Theoretical results provide a reasonable explanation of the observed SMM performance based on a concise criterion, i.e., the co-existence of long τQTM and high Ueff. To have the desired electronic structure favoring good SMM performance, the contribution from the equatorial coordinating atoms might be even more important than that from the axial coordinating atoms. Widening the axial ∠O–Dy–O might be a probable way to improve the SMM performance of pentacoordinated Dy-SIMs. Starting from existing systems, a rigid-scan type exploration indicates the possibility of Ueff higher than 1600 K. Full article
Show Figures

Figure 1

Back to TopTop