Two Dy2 Zero-Field Single-Molecule Magnets Derived from Hydrazone Schiff Base-Bridging Ligands and 1,3-Di(2-pyridyl)-1,3-propanedione †
Abstract
1. Introduction
2. Results
2.1. Crystal Structures
2.2. Magnetic Properties
3. Conclusions
4. Materials and Methods
4.1. General Remarks
4.2. Preparation of H2LSchiff-1
4.3. Preparation of 1
4.4. Preparation of 2
4.5. X-Ray Crystallography
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic Bistability in a Metal-Ion Cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-D.; Wang, B.-W.; Sun, H.-L.; Wang, Z.-M.; Gao, S. An Organometallic Single-Ion Magnet. J. Am. Chem. Soc. 2011, 133, 4730–4733. [Google Scholar] [CrossRef]
- Ding, Y.-S.; Chilton, N.F.; Winpenny, R.E.P.; Zheng, Y.-Z. On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. Angew. Chem. Int. Ed. 2016, 55, 16071–16074. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef]
- Canaj, A.B.; Dey, S.; Martí, E.R.; Wilson, C.; Rajaraman, G.; Murrie, M. Insight into D6h Symmetry: Targeting Strong Axiality in Stable Dysprosium(III) Hexagonal Bipyramidal Single-Ion Magnets. Angew. Chem. Int. Ed. 2019, 58, 14146–14151. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.-L.; Zhang, Y.-Q.; Tang, J. Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082. [Google Scholar] [CrossRef]
- Liu, C.-M.; Zhang, D.-Q.; Hao, X.; Zhu, D.-B. Arraying Octahedral {Cr2Dy4} Units into 3D Single-Molecule-Magnet-Like Inorganic Compounds with Sulfate Bridges. Inorg. Chem. 2018, 57, 6803–6806. [Google Scholar] [CrossRef]
- Lin, P.-H.; Burchell, T.J.; Clérac, R.; Murugesu, M. Dinuclear Dysprosium(III) Single-Molecule Magnets with a Large Anisotropic Barrier. Angew. Chem. Int. Ed. 2008, 47, 8848–8851. [Google Scholar] [CrossRef]
- Guo, Y.-N.; Xu, G.-F.; Wernsdorfer, W.; Ungur, L.; Guo, Y.; Tang, J.; Zhang, H.-J.; Chibotaru, L.F.; Powell, A.K. Strong Axiality and Ising Exchange Interaction Suppress Zero-Field Tunneling of Magnetization of an Asymmetric Dy2 Single-Molecule Magnet. J. Am. Chem. Soc. 2011, 133, 11948–11951. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Zhao, L.; Chen, P.; Guo, Y.-N.; Guo, Y.; Li, Y.-H.; Tang, J. Phenoxido and alkoxido-bridged dinuclear dysprosium complexes showing single-molecule magnet behavior. Dalton Trans. 2012, 41, 2966–2971. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Li, X.-L.; Liu, Z.; Mansikkamäki, A.; Tang, J. An investigation into the magnetic interactions in a series of Dy2 single-molecule magnets. Dalton Trans. 2020, 49, 10477–10485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jung, J.; Zhang, P.; Guo, M.; Zhao, L.; Tang, J.; Le Guennic, B. Site-Resolved Two-Step Relaxation Process in an Asymmetric Dy2 Single-Molecule Magnet. Chem. Eur. J. 2016, 22, 1392–1398. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, Y.-Q.; Sun, W.; Liu, H.; Chen, X. Syntheses, structures and magnetic properties of macrocyclic Schiff base-supported homodinuclear lanthanide complexes. Dalton Trans. 2018, 47, 11696–11704. [Google Scholar] [CrossRef]
- Ghosh, S.; Mandal, S.; Singh, M.K.; Liu, C.-M.; Rajaraman, G.; Mohanta, S. Experimental and theoretical exploration of magnetic exchange interactions and single-molecule magnetic behaviour of bis(η1:η2:μ2-carboxylate)GdIII2/DyIII2 systems. Dalton Trans. 2018, 47, 11455–11469. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Chen, Y.; Zhang, X.; Li, Y.; Liu, W.; Dong, Y. A series of dinuclear lanthanide complexes with slow magnetic relaxation for Dy2 and Ho2. Dalton Trans. 2016, 45, 16463–16470. [Google Scholar] [CrossRef]
- Liu, C.-M.; Zhang, D.-Q.; Hao, X.; Zhu, D.-B. Simultaneous assembly of mononuclear and dinuclear dysprosium(III) complexes behaving as single-molecule magnets in a one-pot hydrothermal synthesis. Sci. China Chem. 2017, 60, 358–365. [Google Scholar] [CrossRef]
- Katoh, K.; Aizawa, Y.; Morita, T.; Breedlove, B.K.; Yamashita, M. Elucidation of Dual Magnetic Relaxation Processes in Dinuclear Dysprosium(III) Phthalocyaninato Triple-Decker Single-Molecule Magnets Depending on the Octacoordination Geometry. Chem. Eur. J. 2017, 23, 15377–15386. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Han, C.-B.; Zhang, Y.-Q.; Liu, Q.-Y.; Liu, C.-M.; Yin, S.-G. Fine-Tuning Ligand to Modulate the Magnetic Anisotropy in a Carboxylate-Bridged Dy2 Single-Molecule Magnet System. Inorg. Chem. 2016, 55, 5578–5584. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, Y.-Q.; Zhu, Z.; Tang, J. Dysprosium Compounds with Hula-Hoop-like Geometries: The Influence of Magnetic Anisotropy and Magnetic Interactions on Magnetic Relaxation. Inorg. Chem. 2018, 57, 12213–12221. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Sun, W.; Yu, M.; Li, G.; Yan, P.; Murugesu, M. An unsymmetrical coordination environment leading to two slow relaxation modes in a Dy2 single-molecule magnet. Chem. Commun. 2011, 47, 10993–10995. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Bao, S.-S.; Hoshino, N.; Akutagawa, T.; Wang, B.; Ding, Y.-C.; Wei, S.; Zheng, L.-M. Solvent Responsive Magnetic Dynamics of a Dinuclear Dysprosium Single-Molecule Magnet. Chem. Eur. J. 2013, 19, 9619–9628. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-B.; Jiang, X.-M.; Zhu, S.-D.; Du, Z.-Y.; Liu, C.-M.; Xie, Y.-R.; Liu, L.-X. Anion Effects on Lanthanide(III) Tetrazole-1-acetate Dinuclear Complexes Showing Slow Magnetic Relaxation and Photofluorescent Emission. Inorg. Chem. 2016, 55, 3738–3749. [Google Scholar] [CrossRef]
- Kong, M.; Feng, X.; Wang, J.; Zhang, Y.-Q.; Song, Y. Tuning magnetic anisotropy via terminal ligands along the Dy⋯Dy orientation in novel centrosymmetric [Dy2] single molecule magnets. Dalton Trans. 2021, 50, 568–577. [Google Scholar] [CrossRef]
- Liu, C.-M.; Sun, R.; Wang, B.-W.; Wu, F.; Hao, X.; Shen, Z. Homochiral Ferromagnetic Coupling Dy2 Single-Molecule Magnets with Strong Magneto-Optical Faraday Effects at Room Temperature. Inorg. Chem. 2021, 60, 12039–12048. [Google Scholar] [CrossRef]
- Tu, H.-R.; Sun, W.-B.; Li, H.-F.; Chen, P.; Tian, Y.-M.; Zhang, W.-Y.; Zhang, Y.-Q.; Yan, P.-F. Complementation and joint contribution of appropriate intramolecular coupling and local ion symmetry to improve magnetic relaxation in a series of dinuclear Dy2 single-molecule magnets. Inorg. Chem. Front. 2017, 4, 499–508. [Google Scholar] [CrossRef]
- Zhou, Y.-Q.; Deng, W.; Du, S.-N.; Chen, Y.-C.; Ruan, Z.-Y.; Wu, S.-G.; Liu, J.-L.; Tong, M.-L. An alkoxyborate-bridging Dy2 single-molecule magnet with ferromagnetic coupling. Inorg. Chem. Front. 2024, 11, 1061–1069. [Google Scholar] [CrossRef]
- Faraonov, M.A.; Martynov, A.G.; Polovkova, M.A.; Khasanov, S.S.; Gorbunova, Y.G.; Tsivadze, A.Y.; Otsuka, A.; Yamochi, H.; Kitagawa, H.; Konarev, D.V. Single-Molecule Magnets Based on Heteroleptic Terbium(III) Trisphthalocyaninate in Solvent-Free and Solvent-Containing Forms. Magnetochemistry 2023, 9, 36. [Google Scholar] [CrossRef]
- Liu, C.-M. Assembling 4f and 3d–4f clusters as single-molecule magnets by automatic fixation of atmospheric CO2. Dalton Trans. 2025, 54, 9850–9855. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Y.-N.; Tang, J. Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coord. Chem. Rev. 2013, 257, 1728–1763. [Google Scholar] [CrossRef]
- Liu, C.-M.; Hao, X.; Zhu, D.-M.; Zhang, Y.-Q. Effect of coordinated anions on ferromagnetically coupled Dy2 zero-field single-molecule magnets. Dalton Trans. 2024, 53, 6120–6127. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Wu, D.-F.; Gou, J.; Duan, Y.-Y.; Li, L.; Chen, H.-H.; Gao, H.-L.; Cui, J.-Z. Modulation of the properties of dinuclear lanthanide complexes through utilizing different β-diketonate co-ligands: Near-infrared luminescence and magnetization dynamics. Dalton Trans. 2020, 49, 2850–2861. [Google Scholar] [CrossRef]
- Liu, C.-M.; Zou, H.-H.; Zhang, Y.-Q.; Hao, X.; Ren, X.-M. Homochiral Dy2 Schiff Base Complexes Based on (R)/(S)-Chlocyphos: Single-Molecule Magnet Behaviours, Proton Conductivities and MCD Effects. Chin. J. Chem. 2025, 43, 1051–1058. [Google Scholar] [CrossRef]
- Liu, C.-M.; Hao, X.; Zhang, Y.-Q. Homochiral Dy2 zero-field single-molecule magnets derived from axial chiral ligands (R)/(S)-octahydro-1,1′-bi-2-naphthyl phosphate. Dalton Trans. 2025, 54, 4159–4166. [Google Scholar] [CrossRef]
- Liu, C.-M.; Sun, R.; Hao, X.; Li, X.-L.; Wang, B.-W. Homochiral Dy2 single-molecule magnets with strong magneto-optical Faraday effects and strong third-harmonic generation. Inorg. Chem. Front. 2024, 11, 3296–3308. [Google Scholar] [CrossRef]
- Cen, P.; Liu, X.; Zhang, Y.-Q.; Ferrando-Soria, J.; Xie, G.; Chen, S.; Pardo, E. Modulating magnetic dynamics through tailoring the terminal ligands in Dy2 single-molecule magnets. Dalton Trans. 2020, 49, 808–816. [Google Scholar] [CrossRef]
- Liu, M.-J.; Yuan, J.; Tao, J.; Zhang, Y.-Q.; Liu, C.-M.; Kou, H.-Z. Rhodamine Salicylaldehyde Hydrazone Dy(III) Complexes: Fluorescence and Magnetism. Inorg. Chem. 2018, 57, 4061–4069. [Google Scholar] [CrossRef]
- Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chem. Eur. J. 2005, 11, 1479–1494. [Google Scholar] [CrossRef]
- Caporale, C.; Sobolev, A.N.; Phonsri, W.; Murray, K.S.; Swain, A.; Rajaraman, G.; Ogden, M.I.; Massi, M.; Fuller, R.O. Lanthanoid pyridyl-β-diketonate ‘triangles’. New examples of single molecule toroics. Dalton Trans. 2020, 49, 17421–17432. [Google Scholar] [CrossRef]
- Mao, P.-D.; Yao, N.-T.; Sun, H.-Y.; Yan, F.-F.; Zhang, Y.-Q.; Meng, Y.-S.; Liu, T. Design of Heterometallic {LnIII-MV} (Ln = Dy, Er; M = W, Mo) Molecular Nanomagnets: Protonation Induced Structural Diversification. Cryst. Growth Des. 2022, 23, 450–464. [Google Scholar] [CrossRef]
- Kumar, P.; Swain, A.; Acharya, J.; Li, Y.; Kumar, V.; Rajaraman, G.; Colacio, E.; Chandrasekhar, V. Synthesis, Structure, and Zero-Field SMM Behavior of Homometallic Dy2, Dy4, and Dy6 Complexes. Inorg. Chem. 2022, 61, 11600–11621. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-N.; Xu, G.-F.; Gamez, P.; Zhao, L.; Lin, S.-Y.; Deng, R.; Tang, J.; Zhang, H.-J. Two-Step Relaxation in a Linear Tetranuclear Dysprosium(III) Aggregate Showing Single-Molecule Magnet Behavior. J. Am. Chem. Soc. 2010, 132, 8538–8539. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Zhang, D.-Q.; Zhu, D.-B. A single-molecule magnet featuring a parallelogram [Dy4(OCH2−)4] core and two magnetic relaxation processes. Dalton Trans. 2013, 42, 14813–14818. [Google Scholar] [CrossRef]
- Langley, S.K.; Chilton, N.F.; Moubaraki, B.; Murray, K.S. Single-Molecule Magnetism in Three Related {Co2IIIDy2III}-Acetylacetonate Complexes with Multiple Relaxation Mechanisms. Inorg. Chem. 2013, 52, 7183–7192. [Google Scholar] [CrossRef]
- Jin, Y.-S.; Liu, C.-M.; Zhang, Y.-Q.; Kou, H.-Z. Trinuclear Dy(III) Single- Molecule Magnets with Two-Step Relaxation. Chin. J. Chem. 2023, 41, 2641–2647. [Google Scholar] [CrossRef]
- Chilton, N.F.; Collison, D.; McInnes, E.J.L.; Winpenny, R.E.P.; Soncini, A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Commun. 2013, 4, 2551. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Aubin, S.M.; Sun, Z.; Pardi, L.; Krzysteck, J.; Folting, K.; Brunel, L.-J.; Rheingold, A.L.; Christou, G.; Hendrickson, D.N. Reduced Anionic Mn12 Molecules with Half-Integer Ground States as Single-Molecule Magnets. Inorg. Chem. 1999, 38, 5329–5340. [Google Scholar] [CrossRef]
Dy1–O4 | 2.303(6) | Dy1–O1 #1 | 2.191(6) |
Dy1–O3 | 2.355(6) | Dy1–O2 | 2.352(5) |
Dy1–O2 #1 | 2.385(5) | Dy1–O9 | 2.360(6) |
Dy1–N3 | 2.579(7) | Dy1–N1 #1 | 2.502(7) |
Dy2–O5 | 2.197(6) | Dy2–O8 | 2.302(6) |
Dy2–O6 #2 | 2.340(6) | Dy2–O6 | 2.387(5) |
Dy2–O7 | 2.352(6) | Dy2–O10 | 2.351(6) |
Dy2–N10 | 2.584(7) | Dy2–N8 | 2.497(7) |
O4–Dy1–O3 | 71.4(2) | O4–Dy1–O9 | 147.9(2) |
O3–Dy1–O9 | 140.7(2) | Dy1–O2–Dy1 #1 | 112.7(2) |
O8–Dy2–O7 | 71.4(2) | O8–Dy2–O10 | 148.5(2) |
O10–Dy2–O7 | 140.0(2) | Dy2 #2–O6–Dy2 | 112.6(2) |
Dy1–O4 | 2.326(2) | Dy1–O2 | 2.176(2) |
Dy1–O5 | 2.361(2) | Dy1–O3 | 2.312(2) |
Dy1–O3 #3 | 2.322(2) | Dy1–O6 | 2.392(2) |
Dy1–N1 | 2.509(2) | Dy1–N3 #3 | 2.541(2) |
O4–Dy1–O5 | 71.04(7) | O4–Dy1–O6 | 149.21(8) |
O5–Dy1–O6 | 139.50(8) | Dy1–O3–Dy1#3 | 113.95(8) |
Complex | Magnetic Interaction | Dy⋯Dy (Å) | Dy⋯O (Å) a | Dy⋯Dy (°) | Coordination Sphere | Ref. |
---|---|---|---|---|---|---|
[Dy2(ovph)2Cl2(MeOH)3]·sol | ferromagnetic | 3.864 | 2.333 | 112.3, 111.5 | N2O6, N2O3Cl2 | [11] |
[Dy2(L1)2(NO3)2(CH3OH)2]·sol | ferromagnetic | 3.923 | 2.327 | 114.9 | N2O6 | [12] |
Dy2(L2)2(DMF)2(NO3)2 | ferromagnetic | 3.869 | 2.319 | 113.0 | N2O6 | [32] |
Dy2(L2)2(DMF)2(AcO)2 | ferromagnetic | 3.961 | 2.348 | 115.1 | N2O6 | [32] |
[Dy2(TTA)2(L3)2(CH3OH)2]·sol | ferromagnetic | 3.992 | 2.374 | 114.5 | N2O6 | [33] |
[Dy2(tfa)2(L3)2(CH3OH)2] | ferromagnetic | 3.911 | 2.363 | 111.7 | N2O6 | [33] |
[Dy2(R-L)2(L4)2(DMA)2] | ferromagnetic | 3.879 | 2.380 | 109.4, 108.9 | N2O6 | [34] |
[Dy2(S-L)2(L5)2(H2O)(MeOH)]·sol | ferromagnetic | 3.901 | 2.369 | 111.3, 110.4 | N2O6 | [35] |
[Dy2(D-tfc)2(L6)2(H2O)2]·sol | ferromagnetic | 3.902 | 2.357 | 111.6, 111.9 | N2O6 | [36] |
[Dy2(D-tfc)2(L7)2(H2O)2]·sol | ferromagnetic | 3.899 | 2.352 | 111.9, 112.1 | N2O6 | [36] |
[Dy2(D-pfc)2(L6)2(DMF)2] | ferromagnetic | 3.906 | 2.333 | 113.4, 113.3 | N2O6 | [36] |
[Dy2(D-pfc)2(L7)2(H2O)2]·sol | ferromagnetic | 3.918 | 2.353 | 113.2, 112.2 | N2O6 | [36] |
[Dy2(LSchiff-1)2(DMF)2(dpp)2]·sol | ferromagnetic | 3.942, 3.932 | 2.366 | 112.7, 112.6 | N2O6 | this work |
[Dy2(LSchiff-2)2(DMF)2(dpp)2]·sol | ferromagnetic | 3.885 | 2.317 | 113.95 | N2O6 | this work |
[Dy2(NO3)2(H2L8)2]·NO3·sol | 3.976 | 2.414 | 110.5, 111.0 | N3O6 | [42] |
1 | 2 | |
formula | C57.5H47.5Cl2Dy2N14.5O10.5 | C66H68Dy2N14O14 |
FW | 1505.50 | 1606.34 |
crystal system | triclinic | monoclinic |
space group | P-1 | P21/c |
a [Å] | 13.6737(3) | 13.5044(2) |
b [Å] | 15.5510(4) | 16.6323(2) |
c [Å] | 17.1825(4) | 15.5855(2) |
α [°] | 71.194(2) | 90 |
β [°] | 68.498(2) | 107.308(2) |
γ [°] | 67.717(2) | 90 |
V [Å3] | 3073.36(14) | 3342.13(8) |
Z | 2 | 2 |
ρcalc [g cm−3] | 1.627 | 1.596 |
μ [mm−1] | 2.569 | 2.294 |
T [K] | 170 | 170 |
λ [Å] | 0.71073 | 0.71073 |
reflections collected | 73,968 | 47,513 |
unique reflections | 10,125 | 5572 |
observed reflections | 8949 | 5247 |
parameters | 808 | 438 |
GoF | 1.181 | 1.075 |
R1 [I ≥ 2σ (I)] | 0.0605 | 0.0242 |
WR2 [I ≥ 2σ (I)] | 0.1933 | 0.0639 |
CCDC | 2454031 | 2454030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-M. Two Dy2 Zero-Field Single-Molecule Magnets Derived from Hydrazone Schiff Base-Bridging Ligands and 1,3-Di(2-pyridyl)-1,3-propanedione. Magnetochemistry 2025, 11, 58. https://doi.org/10.3390/magnetochemistry11070058
Liu C-M. Two Dy2 Zero-Field Single-Molecule Magnets Derived from Hydrazone Schiff Base-Bridging Ligands and 1,3-Di(2-pyridyl)-1,3-propanedione. Magnetochemistry. 2025; 11(7):58. https://doi.org/10.3390/magnetochemistry11070058
Chicago/Turabian StyleLiu, Cai-Ming. 2025. "Two Dy2 Zero-Field Single-Molecule Magnets Derived from Hydrazone Schiff Base-Bridging Ligands and 1,3-Di(2-pyridyl)-1,3-propanedione" Magnetochemistry 11, no. 7: 58. https://doi.org/10.3390/magnetochemistry11070058
APA StyleLiu, C.-M. (2025). Two Dy2 Zero-Field Single-Molecule Magnets Derived from Hydrazone Schiff Base-Bridging Ligands and 1,3-Di(2-pyridyl)-1,3-propanedione. Magnetochemistry, 11(7), 58. https://doi.org/10.3390/magnetochemistry11070058