Magnetic Relaxation in a Heterolanthanide Binuclear Complex Involving a Nitronyl Nitroxide Biradical †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Crystal Structure
2.2. Magnetic Properties
3. Experimental Section
3.1. Materials and Characterizations
3.2. Synthesis of [Dy0.56La1.44(hfac)7(NITPhMeImbisH)]
3.3. X-Ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-Y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [PubMed]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [PubMed]
- Zabala-Lekuona, A.; Seco, J.M.; Colacio, E. Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev. 2021, 441, 213984. [Google Scholar]
- Rinehart, J.D.; Long, J.R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2011, 2, 2078–2085. [Google Scholar] [CrossRef]
- Affronte, M. Molecular nanomagnets for information technologies. J. Mater. Chem. 2009, 19, 1731–1737. [Google Scholar] [CrossRef]
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef]
- Troiani, F.; Affronte, M. Molecular spins for quantum information technologies. Chem. Soc. Rev. 2011, 40, 3119–3129. [Google Scholar] [CrossRef]
- Aromí, G.; Aguilà, D.; Gamez, P.; Luis, F.; Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 2012, 41, 537–546. [Google Scholar]
- Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–186. [Google Scholar]
- Clemente-Juan, J.M.; Coronado, E.; Gaita-Ariño, A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 2012, 41, 7464–7478. [Google Scholar]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [PubMed]
- Randall McClain, K.; Gould, C.A.; Chakarawet, K.; Teat, S.J.; Groshens, T.J.; Long, J.R.; Harvey, B.G. High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(III) metallocenium single-molecule magnets. Chem. Sci. 2018, 9, 8492–8503. [Google Scholar] [PubMed]
- Demir, S.; Jeon, I.-R.; Long, J.R.; Harris, T.D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 2015, 289–290, 149–176. [Google Scholar]
- Demir, S.; Gonzalez, M.I.; Darago, L.E.; Evans, W.J.; Long, J.R. Giant coercivity and high magnetic blocking temperatures for N23− radical-bridged dilanthanide complexes upon ligand dissociation. Nat. Commun. 2017, 8, 2144. [Google Scholar]
- Mavragani, N.; Errulat, D.; Gálico, D.A.; Kitos, A.A.; Mansikkamäki, A.; Murugesu, M. Radical-Bridged Ln4 Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew. Chem. Int. Ed. 2021, 60, 24206–24213. [Google Scholar]
- Zhang, P.; Luo, Q.-C.; Zhu, Z.; He, W.; Song, N.; Lv, J.; Wang, X.; Zhai, Q.-G.; Zheng, Y.-Z.; Tang, J. Radical-Bridged Heterometallic Single-Molecule Magnets Incorporating Four Lanthanoceniums. Angew. Chem. Int. Ed. 2023, 62, e202218540. [Google Scholar]
- Bajaj, N.; Mavragani, N.; Kitos, A.A.; Chartrand, D.; Maris, T.; Mansikkamäki, A.; Murugesu, M. Hard single-molecule magnet behavior and strong magnetic coupling in pyrazinyl radical-bridged lanthanide metallocenes. Chem 2024, 10, 2484–2499. [Google Scholar]
- Sato, R.; Suzuki, K.; Sugawa, M.; Mizuno, N. Heterodinuclear Lanthanoid-Containing Polyoxometalates: Stepwise Synthesis and Single-Molecule Magnet Behavior. Chem. Eur. J 2013, 19, 12982–12990. [Google Scholar]
- Leng, J.-D.; Liu, J.-L.; Zheng, Y.-Z.; Ungur, L.; Chibotaru, L.F.; Guo, F.-S.; Tong, M.-L. Relaxations in heterolanthanide dinuclear single-molecule magnets. Chem. Commun. 2013, 49, 158–160. [Google Scholar]
- Aguilà, D.; Velasco, V.; Barrios, L.A.; González-Fabra, J.; Bo, C.; Teat, S.J.; Roubeau, O.; Aromí, G. Selective Lanthanide Distribution within a Comprehensive Series of Heterometallic [LnPr] Complexes. Inorg. Chem. 2018, 57, 8429–8439. [Google Scholar] [CrossRef]
- Li, Q.-W.; Liu, J.-L.; Jia, J.-H.; Leng, J.-D.; Lin, W.-Q.; Chen, Y.-C.; Tong, M.-L. Fluorescent single-ion magnets: Molecular hybrid (HNEt3)[DyxYb1−x(bpyda)2] (x = 0.135−1). Dalton Trans. 2013, 42, 11262–11270. [Google Scholar] [CrossRef] [PubMed]
- Bartolomé, E.; Arauzo, A.; Fuertes, S.; Navarro-Spreafica, L.; Sevilla, P.; Fernández Cortés, H.; Settineri, N.; Teat, S.J.; Sañudo, E.C. Luminescent and magnetic [TbEu] 2D metal–organic frameworks. Dalton Trans. 2023, 52, 7258–7270. [Google Scholar] [CrossRef] [PubMed]
- Costes, J.-P.; Dahan, F.; Nicodème, F. Structure-Based Description of a Step-by-Step Synthesis of Homo- and Heterodinuclear (4f, 4f ′) Lanthanide Complexes. Inorg. Chem. 2003, 42, 6556–6563. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.J.; Glover, P.B.; Solomons, M.C.; Pikramenou, Z. Purely Heterometallic Lanthanide(III) Macrocycles through Controlled Assembly of Disulfide Bonds for Dual Color Emission. J. Am. Chem. Soc. 2011, 133, 1033–1043. [Google Scholar]
- Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y.; Cheng, D.Y.Y.; Wang, D.; Ng, D.K.P.; Jiang, J. Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(III) Triple-Deckers with Symmetrical Molecular Structure. Chem. Eur. J 2005, 11, 1425–1432. [Google Scholar] [CrossRef]
- Artizzu, F.; Quochi, F.; Serpe, A.; Sessini, E.; Deplano, P. Tailoring functionality through synthetic strategy in heterolanthanide assemblies. Inorg. Chem. Front 2015, 2, 213–222. [Google Scholar]
- Le Roy, J.J.; Cremers, J.; Thomlinson, I.A.; Slota, M.; Myers, W.K.; Horton, P.H.; Coles, S.J.; Anderson, H.L.; Bogani, L. Tailored homo- and hetero- lanthanide porphyrin dimers: A synthetic strategy for integrating multiple spintronic functionalities into a single molecule. Chem. Sci. 2018, 9, 8474–8481. [Google Scholar] [CrossRef]
- Placidi, M.P.; Villaraza, A.J.L.; Natrajan, L.S.; Sykes, D.; Kenwright, A.M.; Faulkner, S. Synthesis and Spectroscopic Studies on Azo-Dye Derivatives of Polymetallic Lanthanide Complexes: Using Diazotization to Link Metal Complexes Together. J. Am. Chem. Soc. 2009, 131, 9916–9917. [Google Scholar] [CrossRef]
- Natrajan, L.S.; Villaraza, A.J.L.; Kenwright, A.M.; Faulkner, S. Controlled preparation of a heterometallic lanthanide complex containing different lanthanides in symmetrical binding pockets. Chem. Commun. 2009, 6020–6022. [Google Scholar] [CrossRef]
- Douib, H.; Flores Gonzalez, J.; Speed, S.; Montigaud, V.; Lefeuvre, B.; Dorcet, V.; Riobé, F.; Maury, O.; Gouasmia, A.; Le Guennic, B.; et al. Modulation of the magnetic and photophysical properties in 3d–4f and 4f–4f′ heterobimetallic complexes involving a tetrathiafulvalene-based ligand. Dalton Trans. 2022, 51, 16486–16496. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE 2.1; University of Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Xie, J.; Han, J.; Huang, X.; Jin, C.; Li, L.; Sutter, J.-P. Enhancing the Magnetization Blocking Energy of Biradical-Metal System by Merging Discrete Complexes into One-Dimensional Chains. Chem. Eur. J 2023, 29, e202203852. [Google Scholar] [PubMed]
- Bernot, K.; Pointillart, F.; Rosa, P.; Etienne, M.; Sessoli, R.; Gatteschi, D. Single molecule magnet behaviour in robust dysprosium–biradical complexes. Chem. Commun. 2010, 46, 6458–6460. [Google Scholar]
- Xi, L.; Han, J.; Huang, X.; Li, L. Nitronyl Nitroxide Biradical-Based Binuclear Lanthanide Complexes: Structure and Magnetic Properties. Magnetochemistry 2020, 6, 48. [Google Scholar] [CrossRef]
- Yang, M.; Sun, J.; Guo, J.; Sun, G.; Li, L. Cu–Ln compounds based on nitronyl nitroxide radicals: Synthesis, structure, and magnetic and fluorescence properties. CrystEngComm 2016, 18, 9345–9356. [Google Scholar]
- Wang, X.-L.; Xu, P.-P. Synthesis and Crystal Structure of a Lanthanum-Nitronyl Nitroxide Complex. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2013, 43, 918–921. [Google Scholar]
- Ramade, I.; Kahn, O.; Jeannin, Y.; Robert, F. Design and Magnetic Properties of a Magnetically Isolated GdIIICuII Pair. Crystal Structures of [Gd(hfa)3Cu(salen)], [Y(hfa)3Cu(salen)], [Gd(hfa)3Cu(salen)(Meim)], and [La(hfa)3(H2O)Cu(salen)] [hfa = Hexafluoroacetylacetonato, salen = N,N‘-Ethylenebis(salicylideneaminato), Meim = 1-Methylimidazole]. Inorg. Chem. 1997, 36, 930–936. [Google Scholar]
- Xi, L.; Li, H.; Sun, J.; Ma, Y.; Tang, J.; Li, L. Designing Multicoordinating Nitronyl Nitroxide Radical Toward Multinuclear Lanthanide Aggregates. Inorg. Chem. 2020, 59, 443–451. [Google Scholar]
- Han, J.; Jin, C.; Wang, X.; Huang, X.; Song, H.; Xie, J.; Li, L. Magnetic Relaxation in Unique Nitronyl Nitroxide Biradical-Ln–Cu Chains with Ln-bis(NIT)–Cu-bis(NIT)–Ln Units. Dalton Trans. 2023, 52, 6853–6859. [Google Scholar]
- Catala, L.; Le Moigne, J.; Kyritsakas, N.; Rey, P.; Novoa, J.J.; Turek, P. Towards a Better Understanding of the Magnetic Interactions within m-Phenylene α-Nitronyl Imino Nitroxide Based Biradicals. Chem. Eur. J 2001, 7, 2466–2480. [Google Scholar] [CrossRef]
- Aubin, S.M.J.; Sun, Z.; Pardi, L.; Krzystek, J.; Folting, K.; Brunel, L.-C.; Rheingold, A.L.; Christou, G.; Hendrickson, D.N. Reduced Anionic Mn12 Molecules with Half-Integer Ground States as Single-Molecule Magnets. Inorg. Chem. 1999, 38, 5329–5340. [Google Scholar]
- Zheng, Y.Z.; Lan, Y.; Anson, C.E.; Powell, A.K. Anion-perturbed magnetic slow relaxation in planar {Dy4} clusters. Inorg. Chem. 2008, 47, 10813–10815. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.-M.; Li, H.-Y.; Zhang, Y.-Q.; Yang, E.-C.; Zhao, X.-J. Magnetic Relaxation Dynamics of a Centrosymmetric Dy2 Single-Molecule Magnet Triggered by Magnetic-Site Dilution and External Magnetic Field. Inorg. Chem. 2017, 56, 5611–5622. [Google Scholar] [CrossRef] [PubMed]
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Jing, P.; Xi, L.; Lu, J.; Han, J.; Huang, X.; Jin, C.; Xie, J.; Li, L. Regulating Spin Dynamics of Nitronyl Nitroxide Biradical Lanthanide Complexes through Introducing Different Transition Metals. Chem.—Asian J. 2021, 16, 793–800. [Google Scholar] [CrossRef]
- Xi, L.; Sun, J.; Wang, K.; Lu, J.; Jing, P.; Li, L. Slow magnetic relaxation in CoII–LnIII heterodinuclear complexes achieved through a functionalized nitronyl nitroxide biradical. Dalton Trans. 2020, 49, 1089–1096. [Google Scholar] [CrossRef]
- Wang, K.; Sun, J.; Xi, L.; Lu, J.; Jing, P.; Li, L. Heterometallic Ln–Cu complexes derived from a phenyl pyrimidyl substituted nitronyl nitroxide biradical. Dalton Trans. 2019, 48, 14383–14389. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Li, X.; Li, T.; Tian, L.; Liu, Z.Y.; Wang, X.G. A series of heterospin complexes based on lanthanides and pyridine biradicals: Synthesis, structure and magnetic properties. RSC Adv. 2015, 5, 17131–17139. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Tian, L.; Liu, Z.Y.; Wang, X.G. A family of rare earth complexes with chelating furan biradicals: Syntheses, structures and magnetic properties. RSC Adv. 2015, 5, 74864–74873. [Google Scholar] [CrossRef]
- Bernot, K.; Bogani, L.; Caneschi, A.; Gatteschi, D.; Sessoli, R. A Family of Rare-Earth-Based Single Chain Magnets: Playing with Anisotropy. J. Am. Chem. Soc. 2006, 128, 7947–7956. [Google Scholar] [CrossRef]
- Kahn, O. Molecular Magnetism; Wiley-VCH: Weinheim, Germany, 1993. [Google Scholar]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
Compound | Configuration | Ueff/kB (K) | τ0 (s) | Hdc (Oe) | Ref. |
---|---|---|---|---|---|
[Dy2Cu3(hfac)12(NITPhMeImbis)2] | C2v | 13 | 5.80 × 10−8 | 3000 | [32] |
[Dy(hfac)3(NITmbis)]2 | C2v | 11.6 | 2.3 × 10−8 | 0 | [33] |
[DyMn(hfac)5(NITPh-PyPzbis)] | D2d | / | / | / | [45] |
[DyNi(hfac)5(NITPh-PyPzbis)] | C2V | 23.30 | 6.33 × 10−7 | 2000 | [45] |
[DyCo(hfac)5(NITPh-PyPzbis)] | C2V | 14.91 | 6.80 × 10−8 | 2500 | [46] |
[Dy(hfac)3Cu(hfac)2(bisNITPhPyrim)] | C2v ~ D2d | 8.13 | 1.07 × 10−6 | 500 | [47] |
[Dy(hfac)3(NITPymbis)2]2·C7H16 | C2v | none | none | 0 | [48] |
[Dy(hfac)3(NITFumbis)]2 | C2v | 15 | 1.25 × 10−6 | 3000 | [49] |
[Dy0.56La1.44(hfac)7(NITPhMeImbisH)] | C2v(Ln1), C4v(La) | 15.14 | 3.04 × 10−7 | 800 | This study. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xie, J.; Jin, C.; Ma, Y.; Li, L. Magnetic Relaxation in a Heterolanthanide Binuclear Complex Involving a Nitronyl Nitroxide Biradical. Magnetochemistry 2025, 11, 26. https://doi.org/10.3390/magnetochemistry11040026
Zhou Y, Xie J, Jin C, Ma Y, Li L. Magnetic Relaxation in a Heterolanthanide Binuclear Complex Involving a Nitronyl Nitroxide Biradical. Magnetochemistry. 2025; 11(4):26. https://doi.org/10.3390/magnetochemistry11040026
Chicago/Turabian StyleZhou, Yan, Junfang Xie, Chaoyi Jin, Yue Ma, and Licun Li. 2025. "Magnetic Relaxation in a Heterolanthanide Binuclear Complex Involving a Nitronyl Nitroxide Biradical" Magnetochemistry 11, no. 4: 26. https://doi.org/10.3390/magnetochemistry11040026
APA StyleZhou, Y., Xie, J., Jin, C., Ma, Y., & Li, L. (2025). Magnetic Relaxation in a Heterolanthanide Binuclear Complex Involving a Nitronyl Nitroxide Biradical. Magnetochemistry, 11(4), 26. https://doi.org/10.3390/magnetochemistry11040026