Special Issue "Fasciae from a Molecular and Biomechanical Perspective"

A special issue of Life (ISSN 2075-1729). This special issue belongs to the section "Physiology and Pathology".

Deadline for manuscript submissions: 31 May 2022.

Special Issue Editor

Prof. Dr. Carla Stecco
E-Mail Website
Guest Editor
Department of Neuroscience, Institute of Anatomy, University of Padova, Via Gabelli 65, 35127 Padova, Italy
Interests: fascia; connective tissue; myofascial pain; manual treatment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleague,

There is growing interest in the fasciae as a source of pain and for their potential involvement in motor coordination and proprioception, suggesting that specific training or physical therapies can modify their microscopic organization. Recently, we demonstrated that fasciae have specific receptors for endocannabinoids, for estrogen-α and relaxin-1, and that under such stimuli they alter the production of collagen types and hyaluronan. It is also known that diabetes can create a glycation of the collagen fibers in the plantar fascia and, as a result, alter the mechanical properties of the fascia. Besides, fasciae could be barriers to the spread of cancer, and their molecular/biochemical alterations could potentially affect the ability of a cancer to metastasize. Additionally, fasciae envelop the internal organs, and they play a key role in organ mobility. In fact, nobody knows if there are different variables at play in athletes and healthy and pathological populations or how the various physical therapies work.

For this Special Issue, we aim to integrate studies on the following areas:

- Microscopic analysis of the various types of collagen and elastic fibers in fasciae (various types of fasciae and various situations (healthy or pathological));

- Studies about hyaluronan, which is one of the major components of the loose connective tissue inside fasciae;

- Effect of aging or training into fasciae;

- studies about the fascial innervation and how fascial inputs can effects brain dynamics

- studies that analyse the effect of the various physical and manual therapies into fascial tissue

- Observational studies, randomized controlled trials, systematic reviews, and meta-analyses are allowed.

If your article focus more on molecular research, you may choose our Joint Special Issue in IJMS (ISSN 1422-0067, IF 4.556).

Prof. Dr. Carla Stecco
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Life is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fascia
  • connective tissue
  • hyaluronan
  • myofascial pain

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Article
Fascia Lata Alterations in Hip Osteoarthritis: An Observational Cross-Sectional Study
Life 2021, 11(11), 1136; https://doi.org/10.3390/life11111136 - 25 Oct 2021
Viewed by 451
Abstract
The present study compares the structure and composition of fascia lata in healthy subjects and in patients with hip osteoarthritis (OA), to evaluate any differences in the amount of Collagen type I, Collagen type III, and Hyaluronan. Fascia lata samples from voluntary healthy [...] Read more.
The present study compares the structure and composition of fascia lata in healthy subjects and in patients with hip osteoarthritis (OA), to evaluate any differences in the amount of Collagen type I, Collagen type III, and Hyaluronan. Fascia lata samples from voluntary healthy subjects and patients with OA were harvested during surgery. Collagen type I (COL I), III (COL III) antibody, and biotinylated hyaluronan binding protein (HABP) immunohistochemistry stainings were used to evaluate fascial morphology and COL I, COL III, and Hyaluronan (HA) content in both groups. Ten samples from healthy subjects and 11 samples from OA patients were collected. COL I was significantly more abundant in the OA group (p = 0.0015), with a median percentage positivity of 75.2 (IQR 13.11)%, while representing only 67 (IQR: 8.71)% in control cases. COL III, with median values of 9.5 (IQR 3.63)% (OA group) and 17.10 (IQR 11)% (control cases), respectively, showed significant reduction in OA patients (p = 0.002). HA showed a median value of 10.01 (IQR 8.11)% in OA patients, denoting significant decrease (p < 0.0001) with respect to the control group median 39.31 (IQR 5.62)%. The observed differences suggest a relationship between fascial pathology and hip OA. The observed increase in COL I in OA patients, along with the reduction of COL III and HA, could lead to fascial stiffening, which could alter fascial mechanics and be linked to the development and symptoms of OA. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Article
Immediate Effects of Myofascial Release on the Thoracolumbar Fascia and Osteopathic Treatment for Acute Low Back Pain on Spine Shape Parameters: A Randomized, Placebo-Controlled Trial
Life 2021, 11(8), 845; https://doi.org/10.3390/life11080845 - 18 Aug 2021
Viewed by 1111
Abstract
Background: Spine shape parameters, such as leg length and kyphotic or lordotic angle, are influenced by low back pain. There is also evidence that the thoracolumbar fascia plays a role in such pathologies. This study examined the immediate effects of a myofascial release [...] Read more.
Background: Spine shape parameters, such as leg length and kyphotic or lordotic angle, are influenced by low back pain. There is also evidence that the thoracolumbar fascia plays a role in such pathologies. This study examined the immediate effects of a myofascial release (MFR) technique on the thoracolumbar fascia and of an osteopathic treatment (OMT) on postural parameters in patients with acute low back pain (aLBP). Methods: This study was a single-blind randomized placebo-controlled trial. Seventy-one subjects (43.8 ± 10.5 years) suffering from aLBP were randomly and blindedly assigned to three groups to be treated with MFR, OMT, or a placebo intervention. Spinal shape parameters (functional leg length discrepancy (fLLD), kyphotic angle, and lordotic angle) were measured before and after the intervention using video raster stereography. Results: Within the MFR group, fLLD reduced by 5.2 mm, p < 0.001 and kyphotic angle by 8.2 degrees, p < 0.001. Within the OMT group, fLLD reduced by 4.5 mm, p < 0.001, and kyphotic angle by 8.4°, p = 0.007. Conclusion: MFR and OMT have an influence on fLLD and the kyphotic angle in aLBP patients. The interventions could have a regulating effect on the impaired neuromotor control of the lumbar muscles. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Article
Investigation of Reaction Forces in the Thoracolumbar Fascia during Different Activities: A Mechanistic Numerical Study
Life 2021, 11(8), 779; https://doi.org/10.3390/life11080779 - 01 Aug 2021
Viewed by 584
Abstract
Spinal instability remains a complex phenomenon to study while the cause of low back pain continues to challenge researchers. The role of fascia in biomechanics adds to the complexity of spine biomechanics but offers a new window from which to investigate our spines. [...] Read more.
Spinal instability remains a complex phenomenon to study while the cause of low back pain continues to challenge researchers. The role of fascia in biomechanics adds to the complexity of spine biomechanics but offers a new window from which to investigate our spines. Specifically, the thoracolumbar fascia may have an important role in spine biomechanics, and thus the purpose of this study was to access the mechanical influence of the thoracolumbar fascia on spine biomechanics during different simulated activities. A numerical finite element model of the lumbar spine inclusive of the intra-abdominal and intra-muscular regions as well as the thoracolumbar fascia was constructed and validated. Four different loading scenarios were simulated while deformation, stress, pressure, and reaction forces between the thoracolumbar fascia and spine were measured. Model validation was accomplished through comparison to in vivo and ex vivo published studies. Force transmission between the thoracolumbar fascia and the spine increased 40% comparing kyphotic and squatting lifting patterns. Further, the importance of reciprocating paraspinal and intra-abdominal pressures was demonstrated. It was also found that tension in the thoracolumbar fascia remains even in a simulated prone position. This numerical analysis allowed for an objective interpretation of the loads conveyed through the thoracolumbar fascia in different positional or lifting scenarios. Based on validation studies, it would appear to be a viable experimental platform from which insight can be derived. The loads in the thoracolumbar fascia vary considerably based on simulated tasks and are linked to the pressures in the paraspinal and intra-abdominal regions. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Article
Quantitative Evaluation of the Movement Distance of Deep Fascia and Change of Muscle Shape Related to Chain Response in Fascia Tissue of Lower Limb
Life 2021, 11(7), 688; https://doi.org/10.3390/life11070688 - 14 Jul 2021
Viewed by 1349
Abstract
By using ultrasonography, we measured the longitudinal movement distance of the deep fascia (LMDDF), change of the pennation angle (PA) and muscle thickness (MT) in both the tensor fasciae latae muscle (TFL) and the gluteus medius muscle (G-Med) during passive movement of the [...] Read more.
By using ultrasonography, we measured the longitudinal movement distance of the deep fascia (LMDDF), change of the pennation angle (PA) and muscle thickness (MT) in both the tensor fasciae latae muscle (TFL) and the gluteus medius muscle (G-Med) during passive movement of the toes/ankle joints. 21 right lower limbs of 21 healthy males were evaluated in this study. We measured the LMDDF of the TFL and G-Med by measuring distance between the designated landmark on skin and the intersection of the major deep-fascia (D-fascia) and the fascial bundle. We also measured change of the PA and MT of both muscles. Additionally, we also measured the reliability of the measurement and the measurement error. The measurement was performed during three manual positions on the toes/ankle; manual holding of the toes and ankle joint in neutral, toes flexion and ankle plantar flexion/inversion position, toes extension and ankle extension/valgus position. The existence of muscle contraction of both the muscles during passive motion was monitored by active surface electrodes. This study confirmed mobility of the D-fascia in which the TFL’s D-fascia moves and change of muscle shape in the distal direction during no muscle contraction due to passive movement. This fact suggests the possibility that passive tension on fascia tissue of the ankle extends to the proximal part of the limb, i.e., to the D-fascia of the TFL. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Article
Tenderness of the Skin after Chemical Stimulation of Underlying Temporal and Thoracolumbar Fasciae Reveals Somatosensory Crosstalk between Superficial and Deep Tissues
Life 2021, 11(5), 370; https://doi.org/10.3390/life11050370 - 21 Apr 2021
Cited by 1 | Viewed by 560
Abstract
Musculoskeletal pain is often associated with pain referred to adjacent areas or skin. So far, no study has analyzed the somatosensory changes of the skin after the stimulation of different underlying fasciae. The current study aimed to investigate heterotopic somatosensory crosstalk between deep [...] Read more.
Musculoskeletal pain is often associated with pain referred to adjacent areas or skin. So far, no study has analyzed the somatosensory changes of the skin after the stimulation of different underlying fasciae. The current study aimed to investigate heterotopic somatosensory crosstalk between deep tissue (muscle or fascia) and superficial tissue (skin) using two established models of deep tissue pain (namely focal high frequency electrical stimulation (HFS) (100 pulses of constant current electrical stimulation at 10× detection threshold) or the injection of hypertonic saline in stimulus locations as verified using ultrasound). In a methodological pilot experiment in the TLF, different injection volumes of hypertonic saline (50–800 µL) revealed that small injection volumes were most suitable, as they elicited sufficient pain but avoided the complication of the numbing pinprick sensitivity encountered after the injection of a very large volume (800 µL), particularly following muscle injections. The testing of fascia at different body sites revealed that 100 µL of hypertonic saline in the temporal fascia and TLF elicited significant pinprick hyperalgesia in the overlying skin (–26.2% and –23.5% adjusted threshold reduction, p < 0.001 and p < 0.05, respectively), but not the trapezius fascia or iliotibial band. Notably, both estimates of hyperalgesia were significantly correlated (r = 0.61, p < 0.005). Comprehensive somatosensory testing (DFNS standard) revealed that no test parameter was changed significantly following electrical HFS. The experiments demonstrated that fascia stimulation at a sufficient stimulus intensity elicited significant across-tissue facilitation to pinprick stimulation (referred hyperalgesia), a hallmark sign of nociceptive central sensitization. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Article
Use of Reflective Tape to Detect Ultrasound Transducer Movement: A Validation Study
Life 2021, 11(2), 104; https://doi.org/10.3390/life11020104 - 30 Jan 2021
Viewed by 632
Abstract
During dynamic ultrasound assessments, unintended transducer movement over the skin needs to be prevented as it may bias the results. The present study investigated the validity of two methods quantifying transducer motion. An ultrasound transducer was moved on a pre-specified 3 cm distance [...] Read more.
During dynamic ultrasound assessments, unintended transducer movement over the skin needs to be prevented as it may bias the results. The present study investigated the validity of two methods quantifying transducer motion. An ultrasound transducer was moved on a pre-specified 3 cm distance over the semitendinosus muscle of eleven adults (35.8 ± 9.8 years), stopping briefly at intervals of 0.5 cm. Transducer motion was quantified (1) measuring the 2-D displacement of the shadow produced by reflective tape (RT) attached to the skin and (2) using a marker-based, three-dimensional movement analysis system (MAS). Differences between methods were detected with Wilcoxon tests; associations were checked by means of intraclass correlation coefficients (ICC 3.1) and Bland–Altman plots. Values for RT (r = 0.57, p < 0.001) and MAS (r = 0.19, p = 0.002) were significantly higher than true distances (TD). Strong correlations were found between RT and TD (ICC: 0.98, p < 0.001), MAS and TD (ICC: 0.95, p < 0.001), and MAS and RT (ICC: 0.97, p < 0.001). Bland–Altman plots showed narrow limits of agreement for both RT (−0.49 to 0.13 cm) and MAS (−0.49 to 0.34 cm) versus TD. RT and MAS are valid methods to quantify US transducer movement. In view of its low costs and complexity, RT can particularly be recommended for application in research and clinical practice. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Article
Flexor Digitorum Brevis Muscle Dry Needling Changes Surface and Plantar Pressures: A Pre-Post Study
Life 2021, 11(1), 48; https://doi.org/10.3390/life11010048 - 13 Jan 2021
Cited by 2 | Viewed by 829
Abstract
Background: The effects of the dry needling technique and pain reduction have been demonstrated in numerous quality studies. However, the mechanical effects of dry needling are largely unknown. Methods: A total of 18 subjects with flexor digitorum brevis muscle myofascial trigger point were [...] Read more.
Background: The effects of the dry needling technique and pain reduction have been demonstrated in numerous quality studies. However, the mechanical effects of dry needling are largely unknown. Methods: A total of 18 subjects with flexor digitorum brevis muscle myofascial trigger point were evaluated pre- and post-deep dry needling. We measured static footprint variables in a pre–post study. Main findings: We found differences in rearfoot maximum pressure (119.22–111.63 KPa; p = 0.025), midfoot maximum pressure (13.68–17.26 KPa; p = 0.077), midfoot medium pressure (4.75–6.24 KPa; p = 0.035) and forefoot surface (86.58–81.75 cm2; p = 0.020). All variables with significant differences decrease, with the exception of forefoot surface which showed an increase. Conclusions: After flexor digitorum brevis muscle dry needling, midfoot plantar pressures (maximum and medium) and forefoot surface were increased, and rearfoot maximum pressure was decreased. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Review

Jump to: Research, Other

Review
A Role for Superficial Heat Therapy in the Management of Non-Specific, Mild-to-Moderate Low Back Pain in Current Clinical Practice: A Narrative Review
Life 2021, 11(8), 780; https://doi.org/10.3390/life11080780 - 02 Aug 2021
Viewed by 775
Abstract
Low back pain (LBP) is a leading cause of disability. It significantly impacts the patient’s quality of life, limits their daily living activities, and reduces their work productivity. To reduce the burden of LBP, several pharmacological and non-pharmacological treatment options are available. This [...] Read more.
Low back pain (LBP) is a leading cause of disability. It significantly impacts the patient’s quality of life, limits their daily living activities, and reduces their work productivity. To reduce the burden of LBP, several pharmacological and non-pharmacological treatment options are available. This review summarizes the role of superficial heat therapy in the management of non-specific mild-to-moderate LBP. First, we outline the common causes of LBP, then discuss the general mechanisms of heat therapy on (LBP), and finally review the published evidence regarding the impact of superficial heat therapy in patients with acute or chronic non-specific LBP. This review demonstrates that continuous, low-level heat therapy provides pain relief, improves muscular strength, and increases flexibility. Therefore, this effective, safe, easy-to-use, and cost-effective non-pharmacological pain relief option is relevant for the management of non-specific mild or moderate low back pain in current clinical practice. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Review
Does the Calcaneus Serve as Hypomochlion within the Lower Limb by a Myofascial Connection?—A Systematic Review
Life 2021, 11(8), 745; https://doi.org/10.3390/life11080745 - 26 Jul 2021
Viewed by 528
Abstract
(1) Background: Clinical approaches have depicted interconnectivity between the Achilles tendon and the plantar fascia. This concept has been applied in rehabilitation, prevention, and in conservative management plans, yet potential anatomical and histological connection is not fully understood. (2) Objective: To explore the [...] Read more.
(1) Background: Clinical approaches have depicted interconnectivity between the Achilles tendon and the plantar fascia. This concept has been applied in rehabilitation, prevention, and in conservative management plans, yet potential anatomical and histological connection is not fully understood. (2) Objective: To explore the possible explanation that the calcaneus acts as a hypomochlion. (3) Methods: 2 databases (Pubmed and Livivo) were searched and studies, including those that examined the relationship of the calcaneus to the Achilles tendon and plantar fascia and its biomechanical role. The included studies highlighted either the anatomical, histological, or biomechanical aspect of the lower limb. (4) Results: Seventeen studies were included. Some studies depicted an anatomical connection that slowly declines with age. Others mention a histological similarity and continuity via the paratenon, while a few papers have brought forward mechanical reasoning. (5) Conclusion: The concept of the calcaneus acting as a fulcrum in the lower limb can partially be supported by anatomical, histological, and biomechanical concepts. Despite the plethora of research, a comprehensive understanding is yet to be investigated. Further research exploring the precise interaction is necessary. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Review
Fascia Mobility, Proprioception, and Myofascial Pain
Life 2021, 11(7), 668; https://doi.org/10.3390/life11070668 - 08 Jul 2021
Viewed by 1583
Abstract
The network of fasciae is an important part of the musculoskeletal system that is often overlooked. Fascia mobility, especially along shear planes separating muscles, is critical for musculoskeletal function and may play an important, but little studied, role in proprioception. Fasciae, especially the [...] Read more.
The network of fasciae is an important part of the musculoskeletal system that is often overlooked. Fascia mobility, especially along shear planes separating muscles, is critical for musculoskeletal function and may play an important, but little studied, role in proprioception. Fasciae, especially the deep epimysium and aponeuroses, have recently been recognized as highly innervated with small diameter fibers that can transmit nociceptive signals, especially in the presence of inflammation. Patients with connective tissue hyper- and hypo-mobility disorders suffer in large number from musculoskeletal pain, and many have abnormal proprioception. The relationships among fascia mobility, proprioception, and myofascial pain are largely unstudied, but a better understanding of these areas could result in improved care for many patients with musculoskeletal pain. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Other

Jump to: Research, Review

Systematic Review
The Female Pelvic Floor Fascia Anatomy: A Systematic Search and Review
Life 2021, 11(9), 900; https://doi.org/10.3390/life11090900 - 30 Aug 2021
Viewed by 1343
Abstract
The female pelvis is a complex anatomical region comprising the pelvic organs, muscles, neurovascular supplies, and fasciae. The anatomy of the pelvic floor and its fascial components are currently poorly described and misunderstood. This systematic search and review aimed to explore and summarize [...] Read more.
The female pelvis is a complex anatomical region comprising the pelvic organs, muscles, neurovascular supplies, and fasciae. The anatomy of the pelvic floor and its fascial components are currently poorly described and misunderstood. This systematic search and review aimed to explore and summarize the current state of knowledge on the fascial anatomy of the pelvic floor in women. Methods: A systematic search was performed using Medline and Scopus databases. A synthesis of the findings with a critical appraisal was subsequently carried out. The risk of bias was assessed with the Anatomical Quality Assurance Tool. Results: A total of 39 articles, involving 1192 women, were included in the review. Although the perineal membrane, tendinous arch of pelvic fascia, pubourethral ligaments, rectovaginal fascia, and perineal body were the most frequently described structures, uncertainties were identified in micro- and macro-anatomy. The risk of bias was scored as low in 16 studies (41%), unclear in 3 studies (8%), and high in 20 studies (51%). Conclusions: This review provides the best available evidence on the female anatomy of the pelvic floor fasciae. Future studies should be conducted to clarify the discrepancies highlighted and accurately describe the pelvic floor fasciae. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

Back to TopTop