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Abstract

Portable and wearable sensors have gained attention in recent years to perform measure-
ments in many different applications. Sensors based on Electrical Impedance Spectroscopy
(EIS) are particularly promising, because they can make accurate measurements with mini-
mum perturbation to the sample under test. Electrochemical biosensors are devices that
use electrochemical techniques to measure a target analyte. In the case of electrochemical
biosensors based on EIS, the measured impedance spectrum is fitted to that of an equivalent
electrical circuit, whose component values are then used to estimate the concentration of the
target analyte. Fitting EIS data is usually carried out by sophisticated algorithms running
on a PC. In this paper, we have evaluated the feasibility to perform EIS data fitting using
simple Artificial Neural Networks (ANNs) that can be run on resource constrained micro-
controllers, which are typically used for portable and wearable sensors. We considered a
typical case of an impedance spectrum in the range 0.1 Hz-10 kHz, modeled by using the
simplified Randles equivalent circuit. Our analyses have shown that simple ANNs can be
a low power alternative to perform EIS data fitting on low-cost microcontrollers with a
memory occupation in the order of kilo bytes and a measurement accuracy between 1%
and 3%.

Keywords: biosensors; artificial neural networks; electrical impedance spectroscopy;
microcontrollers; Randles circuit; equivalent circuit; memory usage

1. Introduction

The market of portable and wearable sensor systems experienced a strong growth in
recent years with applications in different fields, such as environmental monitoring [1-4],
food quality analysis [5-8], structural health monitoring [9-12], telemedicine [13-16], and
microbial detection [17-20]. Among various types of sensing principles, sensors based on
Electrical Impedance Spectroscopy (EIS) [21] are very attractive, since EIS can accurately
estimate the electrical parameters over a wide range of frequencies by the application of
low-amplitude test signals, thus minimizing the perturbation of the sample under test. For
example, in 2022, Grossi et al. presented a portable sensor system for the determination
of olive oil quality grade and free acidity [22]. The proposed system can be powered
by batteries for in-the-field analysis, and the working principle is based on the electrical
characterization of an emulsion between a hydro-alcoholic reagent and the olive oil sample.
In 2021, Akhter et al. discussed a low-cost and low-power sensing system for real-time
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water quality monitoring [23]. Using sensor electrodes made of multi-walled carbon nan-
otubes with a polydimethylsiloxane substrate, the developed sensor can detect a wide
range of nitrate concentrations from 0.01 ppm to 30 ppm. In 2023, Buscaglia et al. presented
Simple-Z, a low-cost portable impedance analyzer that can be produced at a cost of only
100 USD [24]. The proposed system is based on the integrated circuit AD5933 by Analog
Devices (Wilmington, MA, USA) and has been successfully validated by measuring differ-
ent NapSO4 concentrations in aqueous solution. EIS was also exploited to design biosensors
for different analytes, where a bioreceptor is immobilized on the working electrode for
selective detection of the target compound [25].

In EIS-based sensors, the electrodes are applied to the sample under test, and the
complex impedance (real and imaginary components of the impedance) is measured by the
application of a sine-wave voltage signal (peak-to-peak voltage from 1 mV to a few tens of
mV) over a wide range of frequencies (from milli-hertz to several hundreds of kilo-hertz).
The measured impedance spectrum is then fitted to an equivalent electrical circuit that
models the sensor’s electrical properties, and the circuit parameters are used to estimate
the sample parameters of interest [26,27]. The impedance spectrum fitting to the selected
equivalent electrical circuit is normally carried out by specialized software running on a PC
and leveraging complex mathematical algorithms [28,29]. Examples of such EIS data fitting
software are ZView from Scribner (Southern Pines, NC, USA) [30], Zahner Analysis by
Zahner-Elektrik (Kronach, Germany) [31], ZSimpWin by AMETEK Scientific Instruments
(Oak Ridge, TN, USA) [32], as well as the free online data fitting tool EIS Studio [33].

In the case of portable and wearable sensor systems, resource-constrained devices
(i.e., low-power microcontrollers) are often used as computing devices to minimize energy
consumption and extend the battery lifetime. These devices are characterized by limited
computational power and memory size, thus making the implementation of EIS data
fitting algorithms difficult. As an example, Table 1 reports some details of low-power
microcontrollers commonly used in portable sensor systems. In particular, the table reports,
for each microcontroller, the type of CPU, the Flash memory size, the Static Random Access
Memory (SRAM) size, the characteristics of the integrated analog-to-digital converter (ADC)
and digital-to-analog converter (DAC), and the type of integrated wireless communication
protocols (if any) [34—40]. As can be seen, the SRAM size of such a device is limited, with
values in the range from 256 kB to 512 kB for the microcontrollers that integrate wireless
connectivity to be used in the Internet of Things. In the case of microcontrollers integrated
in portable or wearable sensor systems without wireless connectivity, the available SRAM
size is even lower, with values between 2 kB and 64 kB.

Table 1. Examples of low-power microcontrollers.

Device CPU Flash SRAM ADC DAC Connectivity Ref.
ESP32 32-bit LX6 CPU 448 kB 520 kB 2 x 12-bit ADC 2 x 8-bit DAC Wi, [34]
Bluetooth
STM32WB5MMG  32-bit Cortex M4 1 MB 256 kB 12-bit ADC NA BLEg}gbee' [35]
CYBEI‘Z’SS;;LTI' 32-bit Cortex M3 256 kB 64 kB 2 x 12bit ADC 4 x 8-bit DAC NA [36]
MSP430FG6425 16-bit RISC CPU 64 kB 10kB 16-bit ADC 2 x 12-bit DAC NA [37]
PIC18F2455 8-bit RISC CPU 24 kB 2kB 10-bit ADC NA NA [38]
STMB32L073RZT6  32-bit Cortex MO+ 192 kB 20 kB 12-bit ADC 12-bit DAC NA [39]
ATmega328P 8-bit RISC CPU 32kB 2kB 10-bit ADC NA NA [40]

In recent years, Artificial Neural Networks (ANNSs) have been widely adopted for data
analysis in many applications, such as medical image analysis [41,42], multi-sensor fusion
data analysis [43,44], and sound classification [45,46]. Studies on the use of ANNSs for the
estimation of equivalent electrical circuit parameters in EIS applications have also been
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reported in the literature. In 2023, Buchicchio et al. presented a study on the use of machine
learning models for the estimation of battery state-of-charge from measured EIS data [47].
The use of ANNSs to estimate the state-of-charge of lithium-ion (Li-ion) batteries from EIS
data has also been investigated by Luo in 2021 [48]. In 2025, Saran et al. compared different
machine learning strategies for the interpretation of EIS data to detect the degradation
mechanisms in chemical conversion coatings of magnesium alloys [49]. In 2020, Wang et al.
proposed an ANN for EIS equivalent circuit parameters estimation to evaluate the corrosion
of Q235A steel [50]. In 2025, Zhang et al. presented a convolutional neural network (CNN)
to estimate the state-of-charge of lithium-ion batteries from measured EIS data [51]. In 2023,
Doonyapisut et al. discussed the use of deep neural networks for the analysis of EIS data
and the parameter estimation for different types of equivalent electrical circuits [52]. In
2023, Zulueta et al. investigated the use of deep ANNSs for EIS equivalent circuit parameter
identification on a lead—acid battery dataset [53].

While the results in [47-53] demonstrated the feasibility of EIS equivalent circuit
parameters estimation using ANNSs, the employed ANN structure is generally complex,
and this results in a large number of network trainable parameters that lead to high memory
occupation. In this work, we explore the feasibility of EIS equivalent circuit parameters
estimation by considering simple structures for the employed ANN, and we evaluate the
accuracy of EIS parameters estimation as function of memory occupation. We considered,
as a case study, the equivalent electrical circuit normally used to model electrochemical
biosensors, and we tested ANNs with a maximum of two hidden layers. In Section 2,
the considered equivalent electrical circuit used to model electrochemical biosensors is
presented. In Section 3, the datasets used in the study, the structure of the investigated
ANNS, and the metrics used to evaluate the estimation accuracy are presented. In Section 4,
the results achieved with the investigated ANNSs are discussed and the estimation accuracy
as well as the memory occupation are presented. Finally, conclusive remarks are presented
in Section 5.

2. Equivalent Circuit for Electrochemical Biosensors

Electrochemical biosensors are devices that exploit electrochemical techniques (such
as Electrical Impedance Spectroscopy, Square Wave Voltammetry, Differential Pulse Voltam-
metry, Cyclic Voltammetry, Chrono-Amperometry) for the detection of different types
of analytes [54]. In the case of EIS-based electrochemical biosensors, the most common
measurement setup is based on a three electrodes system: the working electrode (WE),
modified with an immobilized bioreceptor (antibody, nucleic acid, and lectin) for selective
detection of the target analyte; the reference electrode (RE), usually made of Ag/AgCl,
that provides a stable reference voltage; the counter electrode (CE) that is the source of the
current [55-57]. The structure of the WE is presented in Figure 1a, where the biosensing
layer represents an interface between the WE and the bioreceptor, and the binding between
the bioreceptor and the target analyte changes the biosensor impedance, thus allowing for
the measurement of the analyte concentration.

The biosensor impedance spectrum is measured by the application of a sine-wave
voltage test signal (over a wide range of frequencies) between WE and RE, while the
developed current is measured at the CE. The impedance spectrum is usually fitted to the
Randles circuit of Figure 1b, where R accounts for the reagent electrical conductivity; R is
the charge transfer resistance, that is affected by the binding of the target analytes to the
bioreceptors; Zcpg is the impedance of a constant phase element that models the non-ideal
capacitive behavior of the biosensor at the interface between the WE and the reagent; Zyy is
the Warburg impedance that models the ions diffusion process at very low frequencies.
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Figure 1. Schematic of the working electrode for an electrochemical biosensor (a); Randles circuit (b);
simplified Randles circuit (c).

When the frequency of the test signal is not too low, the Randles circuit of Figure 1b can
be modified by removing the Warburg impedance Zyy, resulting in the simplified Randles
circuit of Figure 1c. Given that the impedance of the constant phase element (CPE) can be
expressed as follows:

—jZa

ZcpE = Q(jzlrtf)“ = Q(Zirf)“ x e I5% = —Q(Zirf)“ X [cos(%a) —jsin(%a)} 1

where f is the frequency of the sine-wave test signal, Q is the capacitance of the CPE, and «
is an empirical parameter (in the range from 0 to 1) that models the non-ideal electrode-
reagent interface (« = 1 is the case of an ideal capacitor). The impedance of the simplified
Randles circuit of Figure 1c (that can be defined by four parameters Rs, R¢t, Q, and ) can
thus be expressed as follows:

Z=Ret (15 +75) " = Ret (75 +Q@rprein) ' =

@)

=Rs+ e .
1+RQ(2mf)" cos(%a)-ﬁ-}RctQ(an)“ sm( %uc)

Some works from the literature that discuss electrochemical biosensors modeled with
the simplified Randles circuit are presented in Table 2 [58-65]. For each work, the following
information is provided: the target analyte that is detected by the biosensor, the detection
range, and the range of variation for the parameters Ry (AR.), Q (AQ), and « (Ax). The
range of variation for the parameter R; is not reported in any work; however, its value
should not be higher than a few hundred Ohms, since the supporting reagent is often
characterized by high electrical conductivity. As can be seen, changeation range for the
model parameters changes significantly for the different biosensors, as it is affected by
different elements, such as the material, size, and geometry of the electrodes, the type
and concentration of the immobilized bioreceptor, as well as the electrical properties of
the reagent.
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Table 2. Electrochemical biosensors from the literature that are modeled with the simplified Randles

circuit.
Target Analyte Detection Range ARt AQ Ax Ref.
Prussian blue 0-8 uM 4.15-14.9 MQ 0.82-1.8 uF NA [58]
KCN 0-8 uM 9-13 MQ) 0.8-4.8 uF NA [58]
As;O3 0-8 uM 1.96-4.95 MQ) 0.8-0.89 uF NA [58]
E. coli O157:H7 103107 cfu/mL 1-15 kQ NA NA [59]
DNA 10713-10" M 20-130 kQ NA NA [60]
Bacteria 103-10° cfu/mL 100 Q-2.5kQ NA NA [61]
Dengue virus NA 10-50 kQ) 1-4 uF 0.8-0.9 [62]
Bacteria 10%-108 cfu/mL 70-500 Q) NA NA [63]
Glucose NA 100-600 kO NA NA [64]
ATP 1510794103 M 3-30 kQ) NA NA [65]

3. Artificial Neural Networks for EIS Data Fitting

In this section, the proposed strategy to estimate the parameters of the simplified
Randles circuit is discussed. We have considered the estimation of the parameters R
and Q only, since these are parameters normally used to estimate the concentration of the
target analyte. In Section 3.1, the datasets used to evaluate the accuracy of the proposed
strategy are presented. In Section 3.2, the structure of the investigated ANNSs is presented.
In Section 3.3, the metrics used to evaluate the estimation accuracy, and the memory
occupation are presented. In Section 3.4, the reference value of the accuracy metrics is
calculated in the case that the parameter estimation is carried out with a PC-based circuit
fitting software.

3.1. Considered EIS Datasets

The performance of the ANNs investigated has first been evaluated by different EIS
datasets built using an ad hoc developed software program written in LabVIEW v. 14.0
(National Instrument, Austin, TX, USA), and then validated by using a real EIS dataset
from the literature [62].

The software-generated datasets were produced by calculating the impedance spec-
trum (both real component ReZ and imaginary component ImZ) from Equation (2) using
the values of the model parameters (Rs, R, Q, &) and the test signal frequency as inputs. A
random noise (of the 0.1%) was added to the calculated impedance value to simulate the
uncertainty in the impedance measurement.

The software-generated datasets were produced by considering values of the simpli-
fied Randles circuit parameters randomly distributed in the following ranges: from 100 ()
to 400 Q) for R;, from 5 kQ) to 60 k() for R, from 0.5 uF to 5 uF for Q, and from 0.75 to 0.95
for a. The selected range for the test signal frequency was from 0.1 Hz to 10 kHz.

Three different software-generated datasets, each with 1000 samples, were produced.
Dataset A was built by using five test frequencies logarithmically distributed in the range
0.1 Hz-10 kHz. Dataset B was built by using 15 test frequencies logarithmically distributed
in the range 0.1 Hz-10 kHz. Dataset C was built by using 25 test frequencies logarithmically
distributed in the range 0.1 Hz-10 kHz. Thus, the number of inputs for each sample is 10
for Dataset A, 30 for Dataset B, and 50 for Dataset C (the values of ReZ and ImZ for each
test frequency), while the number of outputs for each sample is two for all datasets (the
nominal values of R.; and Q).

The real EIS dataset used to validate the proposed ANN structures has been presented
by Oliveira et al. [62], where an EIS-based biosensor was built by the immobilization of
concanavalin A on gold microelectrodes to detect dengue virus in biological samples. The
dataset is composed of 18 samples, with 6 samples that are positive to dengue fever (DF),
6 samples that are positive to dengue hemorrhagic fever (DHF), and 6 samples that are
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negative to dengue virus (DN, i.e., dengue negative). The values of the parameters R, Q,
and « for the 18 samples of the dataset are presented in Table 3, while a value of 2002 was
assumed for the parameter R; in all samples.

Table 3. Dataset from the experimental measurements of an EIS-based biosensor for the detection of
dengue virus [62].

Sample Type Rt (kQY) Q(w %
DF 33.80 3.94 0.79
DF 37.20 4.34 0.79
DF 38.90 4.54 0.78
DF 33.79 2.99 0.80
DF 38.34 3.42 0.80
DF 43.73 3.59 0.79

HDF 32.00 2.72 0.85
HDF 29.10 2.47 0.86
HDF 27.86 2.36 0.86
HDF 42.31 2.67 0.86
HDF 37.01 2.35 0.86
HDF 35.20 217 0.86
DN 19.22 1.63 0.88
DN 21.11 1.48 0.88
DN 20.19 1.55 0.88
DN 19.51 1.67 0.88
DN 21.15 1.68 0.88
DN 20.34 1.58 0.88

3.2. Neural Network Structures

For each tested dataset, 11 different fully connected ANN structures were investigated:
6 ANN structures are characterized by a single hidden layer with number of neurons of
8, 16, 24, 32, 48, and 64, respectively, while 5 ANN structures are characterized by two
hidden layers with number of neurons for hidden layer 1 and hidden layer 2 of (16, 8), (24,
12), (32, 16), (48, 24), and (64, 32), respectively. The maximum number of hidden layers
was 2 to maintain the number of trainable parameters (i.e., weights and bias), and thus
the memory occupation, to an acceptable level. The number of neurons for the input layer
is set as the number of input variables, that is 10 for Dataset A, 30 for Dataset B, and
50 for Dataset C. The number of neurons for the output layer is set to two for all ANN
structures and all datasets, representing the two parameters of the simplified Randles
circuit to be estimated (R and Q). The used activation function is Rectified Linear Unit
(ReLu) for the neurons in the hidden layers and Linear for the neurons in the output
layer. The ANN structure for the case of Dataset A, and a single hidden layer with eight
neurons is presented in Figure 2. All the ANN structures were implemented using the Keras
framework in Anaconda Python distribution v. 2.6.0. The 1000 samples of the generated
dataset were divided into 800 samples for the ANN training (20% used for validation) and
200 samples for the ANN testing. The network training was carried out using the Adam
optimizer and mean squared error as a loss function, on 200 epochs with a batch size of 32.
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Figure 2. Schematic of the ANN structure for the case of Dataset A, and a single hidden layer with
eight neurons.

3.3. Performance Metrics

A set of metrics were defined to evaluate the performance of the investigated ANNs
to accurately estimate the simplified Randles circuit parameters (R.; and Q) as well as to
evaluate the cost in terms of memory occupation for the ANN trainable parameters.

The accuracy in the equivalent circuit parameters estimation was evaluated, for both
Rt and Q, by two different metrics: the relative error of the estimated parameter and the
normalized mean squared error.

The relative error of the estimated parameter P (with P = R¢; or ), can be expressed
(in percent) as follows:

AEp =100 - |Pestimated - Pnominal| (3)
P nominal
where Pogtimateq i the estimated value of the parameter P, while Pj;yi,q1 i its nominal value.
The metric AEp was evaluated as the average value on the 200 samples of the test dataset.
The normalized mean squared error for parameter P (with P = Ry or Q) can be
expressed as follows:

NMSEP _ 1 1 (Pestimated,k - Pnomimzl,k)2 (4)

Hp,estimated * HPnominal 1 n

where ypestimated aNd Upyoming are the average values over the 200 samples of the test
dataset for the estimated and nominal value of the parameter P, while # is the size of the
test dataset (200).

The cost in terms of memory occupation for the ANN trainable parameters was
evaluated with the memory usage (MU) metric, which defines the number of bytes needed
to memorize the ANN trainable parameters, given that each ANN trainable parameter is
represented with a floating point number (4 bytes).

3.4. Circuit Fitting Accuracy with a PC Software

The 200 samples of the test dataset were used to estimate the simplified Randles circuit
parameters using the online EIS data fitting software “EIS Studio” [33]. This test was
carried out with all three software-generated datasets, i.e., Dataset A (impedance spectrum
using 5 frequencies), Dataset B (impedance spectrum using 15 frequencies), and Dataset C
(impedance spectrum using 25 frequencies).
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In the case of Dataset A, the EIS data software was not able to fit the impedance
spectrum due to the low number of test frequencies. In the case of Dataset B, data fitting was
carried out correctly and resulted in AEgy = 0.015%, AEg = 0.044%, NMSER; = 5.98-1078,
and NMSEg = 3.02-10~7. In the case of Dataset C, data fitting was carried out correctly and
resulted in AEgy = 0.011%, AEg = 0.031%, NMSEg = 2.33-10~8, and NMSEq = 1.39-10~7.

4. Results and Discussion

In this Section, the simulation results for all the ANN structures and the datasets
presented in Section 3 are discussed. In particular, in Section 4.1, the performance metrics
for the case of the software-generated EIS datasets and all the ANN structures are presented.
In Section 4.2, a discussion on the microcontroller SRAM size needed for the implementation
of the proposed ANN structures is presented. In Section 4.3, the use of the proposed ANN
structures to estimate the EIS parameters for the case of a real dataset in [62] is discussed.

4.1. Performance Metrics for the Software-Generated Datasets

The performance metrics for the software-generated datasets are presented in Table 4
for the case of Dataset A, in Table 5 for the case of Dataset B, and in Table 6 for the case of
Dataset C. The ANN structures are defined as follows: A (one hidden layer with 8 neurons),
B (one hidden layer with 16 neurons), C (two hidden layers with 16 and 8 neurons), D (one
hidden layer with 24 neurons), E (two hidden layers with 24 and 12 neurons), F (one hidden
layer with 32 neurons), G (two hidden layers with 32 and 16 neurons), H (one hidden layer
with 48 neurons), I (two hidden layers with 48 and 24 neurons), ] (one hidden layer with
64 neurons), and K (two hidden layers with 64 and 32 neurons).

Table 4. Metrics for estimation accuracy and memory usage for different ANN structures with Dataset A.

ANN Structure AERct AEg NMSER.t NMSEq MU (Bytes)
A 1.82% 18.04%  3.07 x 107* 2.66 x 1072 424
B 2.24% 14.31% 397 x 1074 1.87 x 1072 840
C 1.97% 8.83% 424 x107* 844 x1073 1320
D 1.44% 132% 197 x 10~%* 1.58 x 102 1256
E 1.73% 737% 326 x107% 6.11 x 1073 2360
F 1.54% 9.76% 190 x 10~%* 1.03 x 102 1672
G 1.29% 538% 150 x 1074 274 x 1073 3656
H 1.03% 8.15% 737 x107° 798 x 103 2504
I 1.15% 471%  1.04x107* 224 x1073 7016
] 1.11% 9.15%  1.01 x107* 8.69 x 1073 3336
K 1.43% 3.04% 199 x107% 1.05 x 1073 11,400

Table 5. Metrics for estimation accuracy and memory usage for different ANN structures with Dataset B.

ANN Structure AERct AEg NMSER.t NMSEq MU (Bytes)
A 6.55% 13.56% 258 x 1073 2.19 x 1072 1064
B 2.93% 10.85% 749 x 107* 122 x 102 2120
C 1.82% 757% 340 x107% 513 x 1073 2600
D 1.41% 853%  1.62x107% 6.72x1073 3176
E 2.21% 594% 471 x107*% 352x 103 4280
F 2.01% 6.54% 297 x107* 472 x 1073 4232
G 1.04% 4.72% 796 x 107°  3.02 x 1073 6216
H 0.77% 598% 628 x 107°  4.19 x 1073 6344
I 0.90% 3.44% 728 x107° 1.08 x 1073 10,856
] 0.86% 468%  6.61 x 107> 248 x 1073 8456
K 0.95% 2.64% 855 x107° 745 x 1074 16,520
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Table 6. Metrics for estimation accuracy and memory usage for different ANN structures with Dataset C.

ANN Structure AER.+ AEq NMSER+ NMSEq MU (Bytes)
A 4.04% 14.10% 147 x 1073  1.85 x 102 1704
B 3.66% 11.64% 599 x 107* 134 x 1072 3400
C 2.09% 849% 288 x107* 691 x103 3880
D 1.43% 10.39% 175 x 107* 9.70 x 1073 5096
E 2.88% 7.87% 556 x107% 515 x 1073 6200
F 1.39% 9.87% 133 x107%* 1.03 x 1072 6792
G 1.62% 6.64% 244 x107* 330x 103 8776
H 1.19% 853% 124 x10~* 797 x 1073 10,184
I 1.41% 455%  1.69 x 107% 240 x 1073 14,696
] 1.11% 8.19%  895x10° 6.23x 103 13,576
K 1.25% 501% 119 x10% 198 x 1073 21,640

In Figure 3 (Figure 4), the relative error of the estimated parameter Ry (Q) is compared
for the different ANN structures and the three considered datasets. As can be seen, the
accuracy achieved is not comparable with a PC-based circuit fitting software that, as shown
in Section 3.4, is characterized by a relative error lower than 0.05%.

O Dataset A W Dataset B [ Dataset C

A B Cc D E F G H J K
ANN structure

Figure 3. Relative error of the estimated parameter R for the different ANN structures and the three
considered datasets.

O Dataset A W Dataset B [ Dataset C

o N £ (2] e
I I | I I

(i I

A B o] D E F G H | J K
ANN structure

Figure 4. Relative error of the estimated parameter Q for the different ANN structures and the three
considered datasets.

However, in the case of parameter R estimation, a relative error between 1% and
2% can also be achieved for simple ANN structures and Dataset A (with advantages in
terms of lower memory occupation), and a relative error lower than 1% can be achieved for
more complex ANN structures and Dataset B. In the case of parameter Q estimation, the
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situation is worse, and a relative error between 2% and 3% can be achieved only for more

complex ANN structures.

In particular, Figure 5 reports the results for Dataset A and ANN structure A. Figure 6
reports the results for Dataset A and ANN structure K. Figure 7 reports the results for
Dataset B and ANN structure A. Figure 8 reports the results for Dataset B and ANN
structure K. In more detail, Figures 5-8 report the scatter plot showing the estimated R
value vs. the nominal R value for all the 200 samples of the test dataset (a), the scatter plot
showing the estimated Q value vs. the nominal Q value for all the 200 samples of the test
dataset (b), the Bode plot showing the real component of the impedance (Re(Z)) as function
of the test signal frequency (c), and the Bode plot showing the imaginary component of the

impedance (Im(Z)) as function of the test signal frequency (d).
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Figure 5. Graphical representation of estimated R value vs. the nominal R value (a), estimated Q
value vs. the nominal Q value (b), Re(Z) vs. frequency (c); and —Im(Z) vs. frequency (d), in the case

of Dataset A and ANN structure A.
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Figure 6. Graphical representation of estimated R value vs. the nominal R value (a), estimated Q
value vs. the nominal Q value (b), Re(Z) vs. frequency (c); and —Im(Z) vs. frequency (d), in the case

of Dataset A and ANN structure K.
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value vs. the nominal Q value (b), Re(Z) vs. frequency (c); and —Im(Z) vs. frequency (d), in the case
of Dataset B and ANN structure A.
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Figure 8. Graphical representation of estimated R value vs. the nominal R value (a), estimated Q

value vs. the nominal Q value (b), Re(Z) vs. frequency (c); and —Im(Z) vs. frequency (d), in the case
of Dataset B and ANN structure K.

The results in the figures are consistent with the data presented in Figures 3 and 4,
and show that the charge transfer resistance R.; can be accurately estimated also with an
implementation requiring low memory usage (Dataset A, ANN structure A). Instead, the
results in the figures show that the accurate estimation of the parameter Q requires a more
complex ANN structure.

In Figure 9 (Figure 10), the relative error of the estimated parameter Ry (Q) is plotted
versus the memory usage (MU). In the case of the parameter R estimation, the best
accuracy (relative error of 0.77%) is achieved for ANN structure H and Dataset B with a
relatively low MU of 6344 bytes, while a relative error close to 1% (1.11%) can be achieved
with ANN structure ] and Dataset A with a MU of only 3336 bytes. For very low-cost
microcontrollers that feature a low SRAM size, the only option is to use ANN structure
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A with Dataset A, with a MU of only 424 bytes and a relative error of 1.82%. In the case
of parameter ) estimation, to achieve an acceptable accuracy, a MU higher than 10 kB is
needed, with the best results that are a relative error of 3.04% for ANN structure K and
Dataset A (MU of 11,400 bytes), and a relative error of 2.64% for ANN structure K and
Dataset B (MU of 16,520 bytes).
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Figure 9. Relative error of the estimated parameter R plotted versus the memory usage (MU).
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Figure 10. Relative error of the estimated parameter Q plotted versus the memory usage (MU).

4.2. Discussion on the Required SRAM Size

In the previous section, the size of the SRAM required to store the ANN trainable

parameters has been estimated for all considered ANNSs, and for the three considered
datasets (Tables 4—6). The size of the SRAM required for the implementation of an EIS-
based biosensor measurement system and equivalent circuit parameters estimation can be

evaluated as the sum of the following four components:

1.

The memory needed to store the voltage sine-wave signals Vi, (input test signal)
and Voyut (proportional to the current through the sensor), acquired with an ADC
(either integrated in the microcontroller or external) and used to calculate the sensor
impedance components Re(Z) and Im(Z). The signals V;, and Vot must be acquired
for every test frequency. However, since the impedance components are calculated
immediately after the signals” acquisition, the same memory region can be reused for
the signals” acquisition for different test frequencies. Assuming that each sample is
stored as a floating point number (4 bytes) and 100 samples are acquired for each of
the two signals (Vi and Vout), 800 bytes are needed.

The memory needed to store the sensor impedance components Re(Z) and Im(Z)
for each frequency of the test signal. Assuming that each impedance component is
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represented by a floating-point number (4 bytes), this memory component requires
40 bytes for Dataset A (5 test frequencies), 120 bytes for Dataset B (15 test frequencies),
and 200 bytes for Dataset C (25 test frequencies).

3. The memory needed to store the trainable parameters of the ANNs. The size of
this memory component is presented in Tables 4-6 and ranges from 424 bytes to
11,400 bytes for Dataset A, from 1064 bytes to 16,520 bytes for Dataset B, and from
1704 bytes to 21,640 bytes for Dataset C.

4. The memory needed to execute the microcontroller code: acquisition of the sine-wave
signals, calculation of the impedance components, implementation of the ANN sum
of products and application of the activation function, information data transfer with
the UART interface. This memory component was estimated by the implementation
on a Nucleo-L152RE development board of the code written in C and compiled with
the MBED Keil Studio Cloud online compiler. The SRAM size was estimated to be
about 2 kB, but it can eventually be lowered by a more efficient assembly code.

By summing the size of the different memory components, the microcontroller SRAM
size requirements can be estimated in the range from 3312 bytes to 14,288 bytes for Dataset
A, from 4032 bytes to 19,488 bytes for Dataset B, and from 4752 bytes to 24,688 bytes for
Dataset C.

Different prototypes of portable and wearable sensor systems have been discussed
in the literature for different types of applications. A low-cost, portable monitoring sys-
tem for indoor environment quality, based on the ATSAMD21G18 microcontroller with
32 kB of SRAM, was presented in [4]. A portable battery-operated sensor system for
the measurement of peroxide index and total phenolic content in olive oil, based on the
STM32L152VCT6 microcontroller with 32 kB of SRAM, was presented in [6]. A portable sen-
sor system, based on the STM32L152RE microcontroller with 80 kB of SRAM, that exploits
optical attenuation measurements for the evaluation of the solid fat content in vegetable
fats and oils was presented in [8]. A wireless-enabled, portable, potentiometric biosensor
for bacterial concentration detection in urine, based on the Tensilica LX6 microcontroller
with 520 kB of SRAM, was presented in [19]. An electrochemical sensor, based on the
AT91SAMB3XS8E microcontroller with 96 kB of SRAM, that features a gas sensor array for
the determination of fish quality was presented in [66]. A portable electrochemical sensing
platform, based on the STM32F303RET6 microcontroller with 80 kB of SRAM, that exploits
EIS measurements for the measurement of atrazine concentration was presented in [67]. A
wearable photoplethysmographic (PPG) sensor system, based on the CY8C29466 microcon-
troller with 2 kB of SRAM, for the measurement of changes in volume of blood vessels was
presented in [68]. An IoT wearable device, based on the nRF52840 microcontroller with
256 kB of SRAM, that can be used to track the health and recovery of COVID-19 patients
was presented in [69].

Based on the presented literature review, almost all microcontrollers integrated in the
proposed systems, with the exception of the system presented in [68], feature a SRAM size
higher than 32 kB that allows the implementation of the proposed approach for EIS data
fitting for all ANN structures and all the considered datasets.

4.3. Validation on a Real EIS Dataset

In this section, the proposed approach for EIS data fitting using simple ANN struc-
tures is validated on the real dataset presented in [62]. The dataset has been obtained
by experimental measurements using an electrochemical biosensor functionalized with
concanavalin A on gold microelectrodes to detect dengue virus in biological samples. As
discussed in Section 3.1, it is composed of 18 human serum samples: 6 samples are positive
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for dengue fever (DF), 6 samples are positive for dengue hemorrhagic fever (DHF), and
6 samples are negative for dengue virus (DN, i.e., dengue negative).

The real dataset presented in [62] has been tested with three different ANN structures:
ANN structure A (one hidden layer with 8 neurons) with the impedance characteristic
samples on five test frequencies from 0.1 Hz to 10 kHz (hereafter referred to as ANN_A_5,
with a memory usage of 3312 bytes when implemented on a microcontroller); ANN struc-
ture J (one hidden layer with 64 neurons) with the impedance characteristic samples on
five test frequencies from 0.1 Hz to 10 kHz (hereafter referred to as ANN_]J_5, with a
memory usage of 6224 bytes when implemented on a microcontroller); ANN structure K
(two hidden layers with 64 and 32 neurons) with the impedance characteristic samples
on 15 test frequencies from 0.1 Hz to 10 kHz (hereafter referred to as ANN_K_15, with a
memory usage of 19,488 bytes when implemented on a microcontroller).

The results are presented in Figure 11, where the values of the charge transfer resistance
R and the capacitance Q are plotted for the 18 tested samples, for the case of parameters
estimated with ANN_A_5 (a), ANN_]_5 (b), ANN_K_15 (c), and for the case of the nominal
values of R and Q presented in [62] (d). As can be seen, all the tested ANN structures can
accurately discriminate between samples contaminated by dengue virus (DF or HDF) and
samples that are not contaminated by dengue virus (DN). Regarding the discrimination
between DF and HDF samples, only the ANN structures ANN_]J_5 and ANN_K_15, as well
as the reference parameter values presented in [62], can differentiate the two subgroups of
dengue fever.
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Figure 11. Scatter plots of the charge transfer resistance R vs. the capacitance Q for the 18 tested
samples in the case of parameters estimated with ANN_A_5 (a), ANN_]J_5 (b), ANN_K_15 (c); and in
the case of the nominal values of R and Q presented in [62] (d).

5. Conclusions

This work presents a study on the feasibility of using simple structures of Artificial
Neural Networks (ANNSs) in biosensor data analysis for implementation on resource-
constrained microcontrollers. We have considered the case study of biosensors based on
Electrical Impedance Spectroscopy (EIS) that are modeled using the simplified Randles
circuit. We have investigated different ANN structures of maximum two hidden layers
with three different software-generated datasets, as well as with a real dataset from the
literature, sampling the impedance spectrum between 0.1 Hz and 10 kHz with 5, 15, and
25 test frequencies, respectively.
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The results have shown that the achieved accuracy in the equivalent circuit parameters
estimation is lower than the accuracy achieved using a PC software for EIS data fitting, but
a relative error in the order of 1% can be achieved for the estimation of the charge transfer
resistance, with a memory usage (to store the ANN trainable parameters) of about 3 kB.
This value is compatible with the implementation on low-cost microcontrollers with limited
SRAM size. In the case of the biosensor equivalent capacitance estimation, the minimum
relative error is higher (about 3%) with a memory usage in the order of 10-15 kB.
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