Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

20 pages, 3550 KiB  
Article
Immobilisation of Cellobiose Dehydrogenase and Laccase on Chitosan Particles as a Multi-Enzymatic System for the Synthesis of Lactobionic Acid
by Justyna Sulej, Wiktoria Piątek-Gołda, Marcin Grąz, Katarzyna Szałapata, Piotr Waśko, Ewa Janik-Zabrotowicz and Monika Osińska-Jaroszuk
J. Funct. Biomater. 2023, 14(7), 383; https://doi.org/10.3390/jfb14070383 - 21 Jul 2023
Cited by 7 | Viewed by 2195
Abstract
Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the [...] Read more.
Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the synthesis of LBA using immobilised enzymes (cellobiose dehydrogenase from Phanerochaete chrysosporium (PchCDH) and laccase from Cerrena unicolor (CuLAC)) on chitosan microspheres. We used three different crosslinking agents: genipin, glutaraldehyde, and polyethyleneimine to activate the chitosan. The FTIR and CellDrop techniques were used to characterise the activated microspheres. Quantitative (HPLC) and qualitative (TLC) methods were used to determine the obtained LBA. The results show that the type of activator used influences the efficiency of the binding of the enzyme to the matrix. Furthermore, the amount of LBA formed depends on the type of system used. The use of a system in which one of the enzymes is immobilised on a PEI-activated carrier (PchCDH) and the other is free (CuLAC) proved to be the most optimal, as it yielded almost 100% conversion of lactose to lactobionic acid. Summarising the data obtained the following: lactobionic acid immobilised on chitosan microspheres has great potential for medical applications. Full article
Show Figures

Figure 1

23 pages, 8382 KiB  
Article
Biological Activity and Thrombogenic Properties of Oxide Nanotubes on the Ti-13Nb-13Zr Biomedical Alloy
by Agnieszka Stróż, Maciej Gawlikowski, Katarzyna Balin, Patrycja Osak, Julian Kubisztal, Maciej Zubko, Joanna Maszybrocka, Karolina Dudek and Bożena Łosiewicz
J. Funct. Biomater. 2023, 14(7), 375; https://doi.org/10.3390/jfb14070375 - 18 Jul 2023
Cited by 4 | Viewed by 2012
Abstract
The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone [...] Read more.
The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone and use as an intelligent carrier in drug delivery systems. Anodization of the Ti-13Nb-13Zr alloy was carried out in 0.5% HF, 1 M (NH4)2SO4 + 2% NH4F, and 1 M ethylene glycol + 4 wt.% NH4F electrolytes. Physicochemical characteristics of ONTs were performed by high-resolution electron microscopy (HREM), X-ray photoelectron spectroscopy (XPS), and scanning Kelvin probe (SKP). Water contact angle studies were conducted using the sitting airdrop method. In vitro biological properties and release kinetics of ibuprofen were investigated. The results of TEM and XPS studies confirmed the formation of the single-walled ONTs of three generations on the bi-phase (α + β) Ti-13Nb-13Zr alloy. The ONTs were composed of oxides of the alloying elements. The proposed surface modification method ensured good hemolytic properties, no cytotoxity for L-929 mouse cells, good adhesion, increased surface wettability, and improved athrombogenic properties of the Ti-13Nb-13Zr alloy. Nanotubular surfaces allowed ibuprofen to be released from the polymer matrix according to the Gallagher–Corrigan model. Full article
(This article belongs to the Special Issue State of the Art in Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

19 pages, 17535 KiB  
Article
Bioprinted 3D Bionic Scaffolds with Pancreatic Islets as a New Therapy for Type 1 Diabetes—Analysis of the Results of Preclinical Studies on a Mouse Model
by Marta Klak, Michał Wszoła, Andrzej Berman, Anna Filip, Anna Kosowska, Joanna Olkowska-Truchanowicz, Michał Rachalewski, Grzegorz Tymicki, Tomasz Bryniarski, Marta Kołodziejska, Tomasz Dobrzański, Dominika Ujazdowska, Jarosław Wejman, Izabela Uhrynowska-Tyszkiewicz and Artur Kamiński
J. Funct. Biomater. 2023, 14(7), 371; https://doi.org/10.3390/jfb14070371 - 14 Jul 2023
Cited by 11 | Viewed by 4017
Abstract
Recently, tissue engineering, including 3D bioprinting of the pancreas, has acquired clinical significance and has become an outstanding potential method of customized treatment for type 1 diabetes mellitus. The study aimed to evaluate the function of 3D-bioprinted pancreatic petals with pancreatic islets in [...] Read more.
Recently, tissue engineering, including 3D bioprinting of the pancreas, has acquired clinical significance and has become an outstanding potential method of customized treatment for type 1 diabetes mellitus. The study aimed to evaluate the function of 3D-bioprinted pancreatic petals with pancreatic islets in the murine model. A total of 60 NOD-SCID (Nonobese diabetic/severe combined immunodeficiency) mice were used in the study and divided into three groups: control group; IsletTx (porcine islets transplanted under the renal capsule); and 3D bioprint (3D-bioprinted pancreatic petals with islets transplanted under the skin, on dorsal muscles). Glucose, C-peptide concentrations, and histological analyses were performed. In the obtained results, significantly lower mean fasting glucose levels (mg/dL) were observed both in a 3D-bioprint group and in a group with islets transplanted under the renal capsule when compared with untreated animals. Differences were observed in all control points: 7th, 14th, and 28th days post-transplantation (129, 119, 118 vs. 140, 139, 140; p < 0.001). Glucose levels were lower on the 14th and 28th days in a group with bioprinted petals compared to the group with islets transplanted under the renal capsule. Immunohistochemical staining indicated the presence of secreted insulin-living pancreatic islets and neovascularization within 3D-bioprinted pancreatic petals after transplantation. In conclusion, bioprinted bionic petals significantly lowered plasma glucose concentration in studied model species. Full article
Show Figures

Figure 1

10 pages, 2974 KiB  
Communication
Decontaminative Properties of Cold Atmospheric Plasma Treatment on Collagen Membranes Used for Guided Bone Regeneration
by Aydin Gülses, Lina Dohrmann, Oral Cenk Aktas, Juliane Wagner, Salih Veziroglu, Tim Tjardts, Torge Hartig, Kim Rouven Liedtke, Jörg Wiltfang, Yahya Acil and Christian Flörke
J. Funct. Biomater. 2023, 14(7), 372; https://doi.org/10.3390/jfb14070372 - 14 Jul 2023
Cited by 3 | Viewed by 2101
Abstract
Background cold atmospheric plasma (CAP) is known to be a surface-friendly yet antimicrobial and activating process for surfaces such as titanium. The aim of the present study was to describe the decontaminating effects of CAP on contaminated collagen membranes and their influence on [...] Read more.
Background cold atmospheric plasma (CAP) is known to be a surface-friendly yet antimicrobial and activating process for surfaces such as titanium. The aim of the present study was to describe the decontaminating effects of CAP on contaminated collagen membranes and their influence on the properties of this biomaterial in vitro. Material and Methods: A total of n = 18 Bio-Gide® (Geistlich Biomaterials, Baden-Baden, Germany) membranes were examined. The intervention group was divided as follows: n = 6 membranes were treated for one minute, and n = 6 membranes were treated for five minutes with CAP using kINPen® MED (neoplas tools GmbH, Greifswald, Germany) with an output of 5 W, respectively. A non-CAP-treated group (n = 6) served as the control. The topographic alterations were evaluated via X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Afterward, the samples were contaminated with E. faecalis for 6 days, and colony-forming unit (CFU) counts and additional SEM analyses were performed. The CFUs increased with CAP treatment time in our analyses, but SEM showed that the surface of the membranes was essentially free from bacteria. However, the deeper layers showed remaining microbial conglomerates. Furthermore, we showed, via XPS analysis, that increasing the CAP time significantly enhances the carbon (carbonyl group) concentration, which also correlates negatively with the decontaminating effects of CAP. Conclusions: Reactive carbonyl groups offer a potential mechanism for inhibiting the growth of E. faecalis on collagen membranes after cold atmospheric plasma treatment. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

17 pages, 4864 KiB  
Article
Human Whole Blood Interactions with Craniomaxillofacial Reconstruction Materials: Exploring In Vitro the Role of Blood Cascades and Leukocytes in Early Healing Events
by Viviana R. Lopes, Ulrik Birgersson, Vivek Anand Manivel, Gry Hulsart-Billström, Sara Gallinetti, Conrado Aparicio and Jaan Hong
J. Funct. Biomater. 2023, 14(7), 361; https://doi.org/10.3390/jfb14070361 - 11 Jul 2023
Cited by 2 | Viewed by 2002
Abstract
The present study investigated early interactions between three alloplastic materials (calcium phosphate (CaP), titanium alloy (Ti), and polyetheretherketone (PEEK) with human whole blood using an established in vitro slide chamber model. After 60 min of contact with blood, coagulation (thrombin–antithrombin complexes, TAT) was [...] Read more.
The present study investigated early interactions between three alloplastic materials (calcium phosphate (CaP), titanium alloy (Ti), and polyetheretherketone (PEEK) with human whole blood using an established in vitro slide chamber model. After 60 min of contact with blood, coagulation (thrombin–antithrombin complexes, TAT) was initiated on all test materials (Ti > PEEK > CaP), with a significant increase only for Ti. All materials showed increased contact activation, with the KK–AT complex significantly increasing for CaP (p < 0.001), Ti (p < 0.01), and PEEK (p < 0.01) while only CaP demonstrated a notable rise in KK-C1INH production (p < 0.01). The complement system had significant activation across all materials, with CaP (p < 0.0001, p < 0.0001) generating the most pronounced levels of C3a and sC5b-9, followed by Ti (p < 0.001, p < 0.001) and lastly, PEEK (p < 0.001, p < 0.01). This activation correlated with leukocyte stimulation, particularly myeloperoxidase release. Consequently, the complement system may assume a more significant role in the early stages post implantation in response to CaP materials than previously recognized. Activation of the complement system and the inevitable activation of leukocytes might provide a more favorable environment for tissue remodeling and repair than has been traditionally acknowledged. While these findings are limited to the early blood response, complement and leukocyte activation suggest improved healing outcomes, which may impact long-term clinical outcomes. Full article
(This article belongs to the Special Issue Scaffolds and Implants for Bone Regeneration)
Show Figures

Graphical abstract

15 pages, 9838 KiB  
Article
Collagen and Beyond: A Comprehensive Comparison of Human ECM Properties Derived from Various Tissue Sources for Regenerative Medicine Applications
by Nashaita Y. Patrawalla, Nilabh S. Kajave, Mohammad Z. Albanna and Vipuil Kishore
J. Funct. Biomater. 2023, 14(7), 363; https://doi.org/10.3390/jfb14070363 - 11 Jul 2023
Cited by 8 | Viewed by 3964
Abstract
Collagen, along with proteoglycans, glycosaminoglycans, glycoproteins, and various growth factors, forms the extracellular matrix (ECM) and contributes to the complexity and diversity of different tissues. Herein, we compared the physicochemical and biological properties of ECM hydrogels derived from four different human tissues: skin, [...] Read more.
Collagen, along with proteoglycans, glycosaminoglycans, glycoproteins, and various growth factors, forms the extracellular matrix (ECM) and contributes to the complexity and diversity of different tissues. Herein, we compared the physicochemical and biological properties of ECM hydrogels derived from four different human tissues: skin, bone, fat, and birth. Pure human collagen type I hydrogels were used as control. Physical characterization of ECM hydrogels and assessment of cell response of cord-tissue mesenchymal stem cells (CMSCs) were performed. Decellularization efficiency was found to be >90% for all ECM. Hydroxyproline quantification assay showed that collagen content in birth ECM was comparable to collagen control and significantly greater than other sources of ECM. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed the presence of γ, β, α1 and α2 collagen chains in all ECMs. Gelation kinetics of ECM hydrogels was significantly slower than collagen control. Compressive modulus of skin ECM was the highest and birth ECM was the lowest. Skin and birth ECM hydrogels were more stable than bone and fat ECM hydrogels. CMSCs encapsulated in birth ECM hydrogels exhibited the highest metabolic activity. Rheological characterization revealed that all ECM-derived inks exhibited shear thinning properties, and skin-derived ECM inks were most suitable for extrusion-based bioprinting for the concentration and printing conditions used in this study. Overall, results demonstrate that the physicochemical and biological properties of ECM hydrogels vary significantly depending on the tissue source. Therefore, careful selection of tissue source is important for development of ECM-based biomimetic tissue constructs for regenerative medicine applications. Full article
(This article belongs to the Special Issue Collagen-Based Materials for Biomedical Applications)
Show Figures

Figure 1

17 pages, 4778 KiB  
Article
PEGylated Paclitaxel Nanomedicine Meets 3D Confinement: Cytotoxicity and Cell Behaviors
by Wenhai Lin, Yuanhao Xu, Xiao Hong and Stella W. Pang
J. Funct. Biomater. 2023, 14(6), 322; https://doi.org/10.3390/jfb14060322 - 15 Jun 2023
Cited by 1 | Viewed by 1920
Abstract
Investigating the effect of nanomedicines on cancer cell behavior in three-dimensional (3D) platforms is beneficial for evaluating and developing novel antitumor nanomedicines in vitro. While the cytotoxicity of nanomedicines on cancer cells has been widely studied on two-dimensional flat surfaces, there is little [...] Read more.
Investigating the effect of nanomedicines on cancer cell behavior in three-dimensional (3D) platforms is beneficial for evaluating and developing novel antitumor nanomedicines in vitro. While the cytotoxicity of nanomedicines on cancer cells has been widely studied on two-dimensional flat surfaces, there is little work using 3D confinement to assess their effects. This study aims to address this gap by applying PEGylated paclitaxel nanoparticles (PEG-PTX NPs) for the first time to treat nasopharyngeal carcinoma (NPC43) cells in 3D confinement consisting of microwells with different sizes and a glass cover. The cytotoxicity of the small molecule drug paclitaxel (PTX) and PEG-PTX NPs was studied in microwells with sizes of 50 × 50, 100 × 100, and 150 × 150 μm2 both with and without a concealed top cover. The impact of microwell confinement with varying sizes and concealment on the cytotoxicity of PTX and PEG-PTX NPs was analyzed by assessing NPC43 cell viability, migration speed, and cell morphology following treatment. Overall, microwell isolation was found to suppress drug cytotoxicity, and differences were observed in the time-dependent effects of PTX and PEG-PTX NPs on NPC43 cells in isolated and concealed microenvironments. These results not only demonstrate the effect of 3D confinement on nanomedicine cytotoxicity and cell behaviors but also provide a novel method to screen anticancer drugs and evaluate cell behaviors in vitro. Full article
Show Figures

Figure 1

20 pages, 3582 KiB  
Article
Biomimetic Liquid Crystal-Modified Mesoporous Silica−Based Composite Hydrogel for Soft Tissue Repair
by Xiaoling Li, Lei Wan, Taifu Zhu, Ruiqi Li, Mu Zhang and Haibin Lu
J. Funct. Biomater. 2023, 14(6), 316; https://doi.org/10.3390/jfb14060316 - 8 Jun 2023
Cited by 2 | Viewed by 1953
Abstract
The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporous [...] Read more.
The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporous silica nanospheres (MSNs) with liquid crystal (LC) to enhance bioactivity and biocompatibility in vitro. This LC modification facilitated crucial cellular processes such as the proliferation, migration, spreading, and expression of angiogenesis−related genes and proteins in human umbilical vein endothelial cells (HUVECs). Furthermore, we incorporated LC−modified MSN within a hydrogel matrix to create a multifunctional dressing that combines the biological benefits of LC−MSN with the mechanical advantages of a hydrogel. Upon application to full−thickness wounds, these composite hydrogels exhibited accelerated healing, evidenced by enhanced granulation tissue formation, increased collagen deposition, and improved vascular development. Our findings suggest that the LC−MSN hydrogel formulation holds significant promise for the repair and regeneration of soft tissues. Full article
Show Figures

Figure 1

14 pages, 2202 KiB  
Article
Ex Vivo Osteogenesis Induced by Calcium Silicate-Based Cement Extracts
by Gabriel Kato, Rita Araújo, Cláudia Rodrigues, Pedro Sousa Gomes, Liliana Grenho and Maria Helena Fernandes
J. Funct. Biomater. 2023, 14(6), 314; https://doi.org/10.3390/jfb14060314 - 7 Jun 2023
Cited by 2 | Viewed by 2082
Abstract
Calcium silicate-based cements are used in a variety of clinical conditions affecting the pulp tissue, relying on their inductive effect on tissue mineralization. This work aimed to evaluate the biological response of calcium silicate-based cements with distinct properties—the fast-setting Biodentine™ and TotalFill® [...] Read more.
Calcium silicate-based cements are used in a variety of clinical conditions affecting the pulp tissue, relying on their inductive effect on tissue mineralization. This work aimed to evaluate the biological response of calcium silicate-based cements with distinct properties—the fast-setting Biodentine™ and TotalFill® BC RRM™ Fast Putty, and the classical slow-setting ProRoot® MTA, in an ex vivo model of bone development. Briefly, eleven-day-old embryonic chick femurs were cultured for 10 days in organotypic conditions, being exposed to the set cements’ eluates and, at the end of the culture period, evaluated for osteogenesis/bone formation by combining microtomographic analysis and histological histomorphometric assessment. ProRoot® MTA and TotalFill® extracts presented similar levels of calcium ions, although significantly lower than those released from BiodentineTM. All extracts increased the osteogenesis/tissue mineralization, assayed by microtomographic (BV/TV) and histomorphometric (% of mineralized area; % of total collagen area, and % of mature collagen area) indexes, although displaying distinct dose-dependent patterns and quantitative values. The fast-setting cements displayed better performance than that of ProRoot® MTA, with BiodentineTM presenting the best performance, within the assayed experimental model. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

19 pages, 2643 KiB  
Article
Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression
by Hamed Alizadeh Sardroud, Xiongbiao Chen and B. Frank Eames
J. Funct. Biomater. 2023, 14(6), 313; https://doi.org/10.3390/jfb14060313 - 7 Jun 2023
Cited by 4 | Viewed by 2647
Abstract
Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might [...] Read more.
Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways. Full article
(This article belongs to the Special Issue Biomaterials for Soft and Hard Tissue Engineering)
Show Figures

Figure 1

17 pages, 3218 KiB  
Article
The Peroxidase-like Nanocomposites as Hydrogen Peroxide-Sensitive Elements in Cholesterol Oxidase-Based Biosensors for Cholesterol Assay
by Olha Demkiv, Wojciech Nogala, Nataliya Stasyuk, Nadiya Grynchyshyn, Bohdan Vus and Mykhailo Gonchar
J. Funct. Biomater. 2023, 14(6), 315; https://doi.org/10.3390/jfb14060315 - 7 Jun 2023
Cited by 4 | Viewed by 2201
Abstract
Catalytically active nanomaterials, in particular, nanozymes, are promising candidates for applications in biosensors due to their excellent catalytic activity, stability and cost-effective preparation. Nanozymes with peroxidase-like activities are prospective candidates for applications in biosensors. The purpose of the current work is to develop [...] Read more.
Catalytically active nanomaterials, in particular, nanozymes, are promising candidates for applications in biosensors due to their excellent catalytic activity, stability and cost-effective preparation. Nanozymes with peroxidase-like activities are prospective candidates for applications in biosensors. The purpose of the current work is to develop cholesterol oxidase-based amperometric bionanosensors using novel nanocomposites as peroxidase (HRP) mimetics. To select the most electroactive chemosensor on hydrogen peroxide, a wide range of nanomaterials were synthesized and characterized using cyclic voltammetry (CV) and chronoamperometry. Pt NPs were deposited on the surface of a glassy carbon electrode (GCE) in order to improve the conductivity and sensitivity of the nanocomposites. The most HRP-like active bi-metallic CuFe nanoparticles (nCuFe) were placed on a previously nano-platinized electrode, followed by conjugation of cholesterol oxidase (ChOx) in a cross-linking film formed by cysteamine and glutaraldehyde. The constructed nanostructured bioelectrode ChOx/nCuFe/nPt/GCE was characterized by CV and chronoamperometry in the presence of cholesterol. The bionanosensor (ChOx/nCuFe/nPt/GCE) shows a high sensitivity (3960 A·M−1·m−2) for cholesterol, a wide linear range (2–50 µM) and good storage stability at a low working potential (−0.25 V vs. Ag/AgCl/3 M KCl). The constructed bionanosensor was tested on a real serum sample. A detailed comparative analysis of the bioanalytical characteristics of the developed cholesterol bionanosensor and the known analogs is presented. Full article
Show Figures

Figure 1

15 pages, 8994 KiB  
Article
Simulation and Experimental Investigation of Balloon Folding and Inserting Performance for Angioplasty: A Comparison of Two Materials, Polyamide-12 and Pebax
by Tao Li, Zhuo Zhang, Wenyuan Wang, Aijia Mao, Yu Chen, Yan Xiong and Fei Gao
J. Funct. Biomater. 2023, 14(6), 312; https://doi.org/10.3390/jfb14060312 - 5 Jun 2023
Cited by 4 | Viewed by 3832
Abstract
Background: A balloon dilatation catheter is a vital tool in percutaneous transluminal angioplasty. Various factors, including the material used, influence the ability of different types of balloons to navigate through lesions during delivery. Objective: Thus far, numerical simulation studies comparing the impacts of [...] Read more.
Background: A balloon dilatation catheter is a vital tool in percutaneous transluminal angioplasty. Various factors, including the material used, influence the ability of different types of balloons to navigate through lesions during delivery. Objective: Thus far, numerical simulation studies comparing the impacts of different materials on the trackability of balloon catheters has been limited. This project seeks to unveil the underlying patterns more effectively by utilizing a highly realistic balloon-folding simulation method to compare the trackability of balloons made from different materials. Methods: Two materials, nylon-12 and Pebax, were examined for their insertion forces via a bench test and a numerical simulation. The simulation built a model identical to the bench test’s groove and simulated the balloon’s folding process prior to insertion to better replicate the experimental conditions. Results: In the bench test, nylon-12 demonstrated the highest insertion force, peaking at 0.866 N, significantly outstripping the 0.156 N force exhibited by the Pebax balloon. In the simulation, nylon-12 experienced a higher level of stress after folding, while Pebax had demonstrated a higher effective strain and surface energy density. In terms of insertion force, nylon-12 was higher than Pebax in specific areas. Conclusion: nylon-12 exerts greater pressure on the vessel wall in curved pathways when compared to Pebax. The simulated insertion forces of nylon-12 align with the experimental results. However, when using the same friction coefficient, the difference in insertion forces between the two materials is minimal. The numerical simulation method used in this study can be used for relevant research. This method can assess the performance of balloons made from diverse materials navigating curved paths and can yield more precise and detailed data feedback compared to benchtop experiments. Full article
Show Figures

Figure 1

17 pages, 3390 KiB  
Article
Bactericidal Activity of Silver Nanoparticles on Oral Biofilms Related to Patients with and without Periodontal Disease
by Perla Alejandra Hernández-Venegas, Rita Elizabeth Martínez-Martínez, Erasto Armando Zaragoza-Contreras, Rubén Abraham Domínguez-Pérez, Simón Yobanny Reyes-López, Alejandro Donohue-Cornejo, Juan Carlos Cuevas-González, Nelly Molina-Frechero and León Francisco Espinosa-Cristóbal
J. Funct. Biomater. 2023, 14(6), 311; https://doi.org/10.3390/jfb14060311 - 2 Jun 2023
Cited by 12 | Viewed by 3320
Abstract
Background and Objectives: Periodontal disease (PD) is a multifactorial oral disease regularly caused by bacterial biofilms. Silver nanoparticles (AgNP) have offered good antimicrobial activity; moreover, there is no available scientific information related to their antimicrobial effects in biofilms from patients with PD. This [...] Read more.
Background and Objectives: Periodontal disease (PD) is a multifactorial oral disease regularly caused by bacterial biofilms. Silver nanoparticles (AgNP) have offered good antimicrobial activity; moreover, there is no available scientific information related to their antimicrobial effects in biofilms from patients with PD. This study reports the bactericidal activity of AgNP against oral biofilms related to PD. Materials and Methods: AgNP of two average particle sizes were prepared and characterized. Sixty biofilms were collected from patients with (30 subjects) and without PD (30 subjects). Minimal inhibitory concentrations of AgNP were calculated and the distribution of bacterial species was defined by polymerase chain reaction. Results: Well-dispersed sizes of AgNP were obtained (5.4 ± 1.3 and 17.5 ± 3.4 nm) with an adequate electrical stability (−38.2 ± 5.8 and −32.6 ± 5.4 mV, respectively). AgNP showed antimicrobial activities for all oral samples; however, the smaller AgNP had significantly the most increased bactericidal effects (71.7 ± 39.1 µg/mL). The most resistant bacteria were found in biofilms from PD subjects (p < 0.05). P. gingivalis, T. denticola, and T. forsythia were present in all PD biofilms (100%). Conclusions: The AgNP showed efficient bactericidal properties as an alternative therapy for the control or progression of PD. Full article
Show Figures

Graphical abstract

14 pages, 6460 KiB  
Article
Green Ultrasound-Assisted Synthesis of Surface-Decorated Nanoparticles of Fe3O4 with Au and Ag: Study of the Antifungal and Antibacterial Activity
by Álvaro de Jesús Ruíz-Baltazar, Harald Norbert Böhnel, Daniel Larrañaga Ordaz, José Antonio Cervantes-Chávez, Néstor Méndez-Lozano and Simón Yobanny Reyes-López
J. Funct. Biomater. 2023, 14(6), 304; https://doi.org/10.3390/jfb14060304 - 1 Jun 2023
Viewed by 2199
Abstract
This work proposes a sonochemical biosynthesis of magnetoplasmonic nanostructures of Fe3O4 decorated with Au and Ag. The magnetoplasmonic systems, such as Fe3O4 and Fe3O4-Ag, were characterized structurally and magnetically. The structural characterizations reveal [...] Read more.
This work proposes a sonochemical biosynthesis of magnetoplasmonic nanostructures of Fe3O4 decorated with Au and Ag. The magnetoplasmonic systems, such as Fe3O4 and Fe3O4-Ag, were characterized structurally and magnetically. The structural characterizations reveal the magnetite structures as the primary phase. Noble metals, such as Au and Ag, are present in the sample, resulting in a structure-decorated type. The magnetic measurements indicate the superparamagnetic behavior of the Fe3O4-Ag and Fe3O4-Au nanostructures. The characterizations were carried out by X-ray diffraction and scanning electron microscopy. Complementarily, antibacterial and antifungal assays were carried out to evaluate the potential properties and future applications in biomedicine. Full article
(This article belongs to the Special Issue Bioactive Coatings and Surfaces for Medical Applications)
Show Figures

Graphical abstract

13 pages, 5013 KiB  
Article
Mesenchymal Stem Cells Combined with a P(VDF-TrFE)/BaTiO3 Scaffold and Photobiomodulation Therapy Enhance Bone Repair in Rat Calvarial Defects
by Leticia Faustino Adolpho, Larissa Mayra Silva Ribeiro, Gileade Pereira Freitas, Helena Bacha Lopes, Maria Paula Oliveira Gomes, Emanuela Prado Ferraz, Rossano Gimenes, Marcio Mateus Beloti and Adalberto Luiz Rosa
J. Funct. Biomater. 2023, 14(6), 306; https://doi.org/10.3390/jfb14060306 - 1 Jun 2023
Cited by 4 | Viewed by 2613
Abstract
Background: Tissue engineering and cell therapy have been the focus of investigations on how to treat challenging bone defects. This study aimed to produce and characterize a P(VDF-TrFE)/BaTiO3 scaffold and evaluate the effect of mesenchymal stem cells (MSCs) combined with this scaffold [...] Read more.
Background: Tissue engineering and cell therapy have been the focus of investigations on how to treat challenging bone defects. This study aimed to produce and characterize a P(VDF-TrFE)/BaTiO3 scaffold and evaluate the effect of mesenchymal stem cells (MSCs) combined with this scaffold and photobiomodulation (PBM) on bone repair. Methods and results: P(VDF-TrFE)/BaTiO3 was synthesized using an electrospinning technique and presented physical and chemical properties suitable for bone tissue engineering. This scaffold was implanted in rat calvarial defects (unilateral, 5 mm in diameter) and, 2 weeks post-implantation, MSCs were locally injected into these defects (n = 12/group). Photobiomodulation was then applied immediately, and again 48 and 96 h post-injection. The μCT and histological analyses showed an increment in bone formation, which exhibited a positive correlation with the treatments combined with the scaffold, with MSCs and PBM inducing more bone repair, followed by the scaffold combined with PBM, the scaffold combined with MSCs, and finally the scaffold alone (ANOVA, p ≤ 0.05). Conclusions: The P(VDF-TrFE)/BaTiO3 scaffold acted synergistically with MSCs and PBM to induce bone repair in rat calvarial defects. These findings emphasize the need to combine a range of techniques to regenerate large bone defects and provide avenues for further investigations on innovative tissue engineering approaches. Full article
(This article belongs to the Special Issue Bone Regeneration and Repair Materials)
Show Figures

Figure 1

14 pages, 4743 KiB  
Article
Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves
by Jingyuan Zhou, Yijing Li, Tao Li, Xiaobao Tian, Yan Xiong and Yu Chen
J. Funct. Biomater. 2023, 14(6), 309; https://doi.org/10.3390/jfb14060309 - 1 Jun 2023
Cited by 5 | Viewed by 3120
Abstract
Polymeric heart valves (PHVs) are a promising and more affordable alternative to mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs). Materials with good durability and biocompatibility used for PHVs have always been the research focus in the field of prosthetic heart valves [...] Read more.
Polymeric heart valves (PHVs) are a promising and more affordable alternative to mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs). Materials with good durability and biocompatibility used for PHVs have always been the research focus in the field of prosthetic heart valves for many years, and leaflet thickness is a major design parameter for PHVs. The study aims to discuss the relationship between material properties and valve thickness, provided that the basic functions of PHVs are qualified. The fluid−structure interaction (FSI) approach was employed to obtain a more reliable solution of the effective orifice area (EOA), regurgitant fraction (RF), and stress and strain distribution of the valves with different thicknesses under three materials: Carbothane PC−3585A, xSIBS and SIBS−CNTs. This study demonstrates that the smaller elastic modulus of Carbothane PC−3585A allowed for a thicker valve (>0.3 mm) to be produced, while for materials with an elastic modulus higher than that of xSIBS (2.8 MPa), a thickness less than 0.2 mm would be a good attempt to meet the RF standard. What is more, when the elastic modulus is higher than 23.9 MPa, the thickness of the PHV is recommended to be 0.l–0.15 mm. Reducing the RF is one of the directions of PHV optimization in the future. Reducing the thickness and improving other design parameters are reliable means to reduce the RF for materials with high and low elastic modulus, respectively. Full article
Show Figures

Figure 1

13 pages, 5176 KiB  
Article
Functional L-Arginine Derivative as an Efficient Vector for Intracellular Protein Delivery for Potential Cancer Therapy
by Xiao He, Yannv Qu, Su Xiong, Zhiru Jiang, Yaqin Tang, Fei Yan, Yuanfei Deng and Yansun Sun
J. Funct. Biomater. 2023, 14(6), 301; https://doi.org/10.3390/jfb14060301 - 30 May 2023
Viewed by 2352
Abstract
The utilization of cytosolic protein delivery is a promising approach for treating various diseases by replacing dysfunctional proteins. Despite the development of various nanoparticle-based intracellular protein delivery methods, the complicated chemical synthesis of the vector, loading efficiency and endosomal escape efficiency of proteins [...] Read more.
The utilization of cytosolic protein delivery is a promising approach for treating various diseases by replacing dysfunctional proteins. Despite the development of various nanoparticle-based intracellular protein delivery methods, the complicated chemical synthesis of the vector, loading efficiency and endosomal escape efficiency of proteins remain a great challenge. Recently, 9-fluorenylmethyloxycarbonyl (Fmoc)-modified amino acid derivatives have been used to self-assemble into supramolecular nanomaterials for drug delivery. However, the instability of the Fmoc group in aqueous medium restricts its application. To address this issue, the Fmoc ligand neighboring arginine was substituted for dibenzocyclooctyne (DBCO) with a similar structure to Fmoc to obtain stable DBCO-functionalized L-arginine derivative (DR). Azide-modified triethylamine (crosslinker C) was combined with DR to construct self-assembled DRC via a click chemical reaction for delivering various proteins, such as BSA and saporin (SA), into the cytosol of cells. The hyaluronic-acid-coated DRC/SA was able to not only shield the cationic toxicity, but also enhance the intracellular delivery efficiency of proteins by targeting CD44 overexpression on the cell membrane. The DRC/SA/HA exhibited higher growth inhibition efficiency and lower IC50 compared to DRC/SA toward various cancer cell lines. In conclusion, DBCO-functionalized L-arginine derivative represents an excellent potential vector for protein-based cancer therapy. Full article
(This article belongs to the Special Issue Nanoparticles and Hydrogel for Drug Delivery: Design and Synthesis)
Show Figures

Figure 1

11 pages, 4835 KiB  
Article
Theta-Gel-Reinforced Hydrogel Composites for Potential Tensile Load-Bearing Soft Tissue Repair Applications
by Charenpreet Virdi, Zufu Lu, Hala Zreiqat and Young Jung No
J. Funct. Biomater. 2023, 14(6), 291; https://doi.org/10.3390/jfb14060291 - 24 May 2023
Cited by 1 | Viewed by 2388
Abstract
Engineering synthetic hydrogels for the repair and augmentation of load-bearing soft tissues with simultaneously high-water content and mechanical strength is a long-standing challenge. Prior formulations to enhance the strength have involved using chemical crosslinkers where residues remain a risk for implantation or complex [...] Read more.
Engineering synthetic hydrogels for the repair and augmentation of load-bearing soft tissues with simultaneously high-water content and mechanical strength is a long-standing challenge. Prior formulations to enhance the strength have involved using chemical crosslinkers where residues remain a risk for implantation or complex processes such as freeze-casting and self-assembly, requiring specialised equipment and technical expertise to manufacture reliably. In this study, we report for the first time that the tensile strength of high-water content (>60 wt.%), biocompatible polyvinyl alcohol hydrogels can exceed 1.0 MPa through a combination of facile manufacturing strategies via physical crosslinking, mechanical drawing, post-fabrication freeze drying, and deliberate hierarchical design. It is anticipated that the findings in this paper can also be used in conjunction with other strategies to enhance the mechanical properties of hydrogel platforms in the design and construction of synthetic grafts for load-bearing soft tissues. Full article
Show Figures

Figure 1

16 pages, 15156 KiB  
Article
Cytotoxicity Induced by Black Phosphorus Nanosheets in Vascular Endothelial Cells via Oxidative Stress and Apoptosis Activation
by Hao Dong, Yin Wen, Jiating Lin, Xianxian Zhuang, Ruoting Xian, Ping Li and Shaobing Li
J. Funct. Biomater. 2023, 14(5), 284; https://doi.org/10.3390/jfb14050284 - 20 May 2023
Cited by 9 | Viewed by 2197
Abstract
Black phosphorus (BP), an emerging two-dimensional material with unique optical, thermoelectric, and mechanical properties, has been proposed as bioactive material for tissue engineering. However, its toxic effects on physiological systems remain obscure. The present study investigated the cytotoxicity of BP to vascular endothelial [...] Read more.
Black phosphorus (BP), an emerging two-dimensional material with unique optical, thermoelectric, and mechanical properties, has been proposed as bioactive material for tissue engineering. However, its toxic effects on physiological systems remain obscure. The present study investigated the cytotoxicity of BP to vascular endothelial cells. BP nanosheets (BPNSs) with a diameter of 230 nm were fabricated via a classical liquid-phase exfoliation method. Human umbilical vein endothelial cells (HUVECs) were used to determine the cytotoxicity induced by BPNSs (0.31–80 μg/mL). When the concentrations were over 2.5 μg/mL, BPNSs adversely affected the cytoskeleton and cell migration. Furthermore, BPNSs caused mitochondrial dysfunction and generated excessive intercellular reactive oxygen species (ROS) at tested concentrations after 24 h. BPNSs could influence the expression of apoptosis-related genes, including the P53 and BCL-2 family, resulting in the apoptosis of HUVECs. Therefore, the viability and function of HUVECs were adversely influenced by the concentration of BPNSs over 2.5 μg/mL. These findings provide significant information for the potential applications of BP in tissue engineering. Full article
Show Figures

Figure 1

15 pages, 5173 KiB  
Article
Addition of Resolvins D1 or E1 to Collagen Membranes Mitigates Their Resorption in Diabetic Rats
by Michal Almogy, Ofer Moses, Nathan Schiffmann, Evgeny Weinberg, Carlos E. Nemcovsky and Miron Weinreb
J. Funct. Biomater. 2023, 14(5), 283; https://doi.org/10.3390/jfb14050283 - 19 May 2023
Viewed by 1738
Abstract
Uncontrolled diabetes is characterized by aberrant inflammatory reactions and increased collagenolysis. We have reported that it accelerates the degradation of implanted collagen membranes (CM), thus compromising their function in regenerative procedures. In recent years, a group of physiological anti-inflammatory agents called specialized pro-resolving [...] Read more.
Uncontrolled diabetes is characterized by aberrant inflammatory reactions and increased collagenolysis. We have reported that it accelerates the degradation of implanted collagen membranes (CM), thus compromising their function in regenerative procedures. In recent years, a group of physiological anti-inflammatory agents called specialized pro-resolving lipid mediators (SPMs) have been tested as a treatment for various inflammatory conditions, either systemically or locally, via medical devices. Yet, no study has tested their effect on the fate of the biodegradable material itself. Here, we measured the in vitro release over time of 100 or 800 ng resolvin D1 (RvD1) incorporated into CM discs. In vivo, diabetes was induced in rats with streptozotocin, while buffer-injected (normoglycemic) rats served as controls. Resolvins (100 or 800 ng of RvD1 or RvE1) were added to biotin-labeled CM discs, which were implanted sub-periosteally over the calvaria of rats. Membrane thickness, density, and uniformity were determined by quantitative histology after 3 weeks. In vitro, significant amounts of RvD1 were released over 1–8 days, depending on the amount loaded. In vivo, CMs from diabetic animals were thinner, more porous, and more variable in thickness and density. The addition of RvD1 or RvE1 improved their regularity, increased their density, and reduced their invasion by the host tissue significantly. We conclude that addition of resolvins to biodegradable medical devices can protect them from excessive degradation in systemic conditions characterized by high degree of collagenolysis. Full article
(This article belongs to the Special Issue Biomaterials for Oral Reconstructive Treatment)
Show Figures

Figure 1

11 pages, 2522 KiB  
Article
Development of Salmon Sperm DNA/Regenerated Silk Bio-Based Films for Biomedical Studies on Human Keratinocyte HaCaT Cells under Solar Spectrum
by Maria Rachele Ceccarini, Francesca Ripanti, Veronica Raggi, Alessandro Paciaroni, Caterina Petrillo, Lucia Comez, Kevin Donato, Matteo Bertelli, Tommaso Beccari and Luca Valentini
J. Funct. Biomater. 2023, 14(5), 280; https://doi.org/10.3390/jfb14050280 - 18 May 2023
Cited by 6 | Viewed by 3308
Abstract
In this study, we fabricated adhesive patches from silkworm-regenerated silk and DNA to safeguard human skin from the sun’s rays. The patches are realized by exploiting the dissolution of silk fibers (e.g., silk fibroin (SF)) and salmon sperm DNA in formic acid and [...] Read more.
In this study, we fabricated adhesive patches from silkworm-regenerated silk and DNA to safeguard human skin from the sun’s rays. The patches are realized by exploiting the dissolution of silk fibers (e.g., silk fibroin (SF)) and salmon sperm DNA in formic acid and CaCl2 solutions. Infrared spectroscopy is used to investigate the conformational transition of SF when combined with DNA; the results indicated that the addition of DNA provides an increase in the SF crystallinity. UV–Visible absorption and circular dichroism spectroscopy showed strong absorption in the UV region and the presence of B-form of DNA once dispersed in the SF matrix, respectively. Water absorption measurements as well as thermal dependence of water sorption and thermal analysis, suggested the stability of the fabricated patches. Biological results on cellular viability (MTT assay) of keratinocyte HaCaT cells after exposures to the solar spectrum showed that both SF and SF/DNA patches are photo-protective by increasing the cellular viability of keratinocytes after UV component exposure. Overall, these SF/DNA patches promise applications in wound dressing for practical biomedical purposes. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

16 pages, 4029 KiB  
Article
Effect of Whitening Toothpastes with Different Active Agents on the Abrasive Wear of Dentin Following Tooth Brushing Simulation
by Dimitrios Dionysopoulos, Spyros Papageorgiou, Constantinos Papadopoulos, Sotiria Davidopoulou, Avraam Konstantinidis and Kosmas Tolidis
J. Funct. Biomater. 2023, 14(5), 268; https://doi.org/10.3390/jfb14050268 - 12 May 2023
Cited by 11 | Viewed by 5370
Abstract
The aim of this research was to evaluate the abrasive dentin wear that can be induced by three commercial whitening toothpastes following a tooth-brushing simulation (TBS) corresponding to a three-month period. Sixty human canines were selected, and the roots were separated from the [...] Read more.
The aim of this research was to evaluate the abrasive dentin wear that can be induced by three commercial whitening toothpastes following a tooth-brushing simulation (TBS) corresponding to a three-month period. Sixty human canines were selected, and the roots were separated from the crowns. Then the roots were randomly divided into six groups (n = 10) and were submitted to TBS using the following slurries: Group 1—deionized water (RDA = 5); Group 2—ISO dentifrice slurry (RDA = 100); Group 3—a regular toothpaste (RDA = 70); Group 4—a charcoal-containing whitening toothpaste; Group 5—a whitening toothpaste containing blue covasorb and hydrated silica; and Group 6—a whitening toothpaste containing microsilica. Following TBS, surface loss and surface roughness changes were evaluated using confocal microscopy. Additionally, surface morphology and mineral content changes were observed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The deionized water group presented the lowest surface loss (p < 0.05), while the charcoal-containing toothpaste presented the highest surface loss, followed by ISO dentifrice slurry (p < 0.001). Blue-covasorb-containing and regular toothpastes did not present statistically significant differences (p = 0.245), and neither didmicrosilica-containing toothpaste or ISO dentifrice slurry (p = 0.112). The surface height parameters and surface morphology changes of the experimental groups followed the surface loss patterns, while no differences were detected in mineral content after TBS.Although the charcoal-containing toothpaste exhibited the highest abrasive wear to dentin, according to ISO 11609, all the tested toothpastes exhibited appropriate abrasive behavior towards dentin. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

17 pages, 3419 KiB  
Article
The Clinical Potential of 3D-Printed Crowns Reinforced with Zirconia and Glass Silica Microfillers
by Abdullah Alshamrani, Abdulaziz Alhotan, Ahmed Owais and Ayman Ellakwa
J. Funct. Biomater. 2023, 14(5), 267; https://doi.org/10.3390/jfb14050267 - 11 May 2023
Cited by 14 | Viewed by 4332
Abstract
The development of 3D-printed crown resin materials with improved mechanical and physical properties is an area of growing interest in dentistry. This study aimed to develop a 3D-printed crown resin material modified with zirconia glass (ZG) and glass silica (GS) microfillers to enhance [...] Read more.
The development of 3D-printed crown resin materials with improved mechanical and physical properties is an area of growing interest in dentistry. This study aimed to develop a 3D-printed crown resin material modified with zirconia glass (ZG) and glass silica (GS) microfillers to enhance overall mechanical and physical properties. A total of 125 specimens were created and divided into five groups: control unmodified resin, 5% either ZG or GS reinforced 3D-printed resin, and 10% either ZG or GS reinforced 3D-printed resin. The fracture resistance, surface roughness, and translucency parameter were measured, and fractured crowns were studied under a scanning electron microscope. The results showed that 3D-printed parts that were strengthened with ZG and GS microfillers demonstrated comparable mechanical performance to unmodified crown resin but resulted in greater surface roughness, and only the group that contained 5% ZG showed an increase in translucency. However, it should be noted that increased surface roughness may impact the aesthetics of the crowns, and further optimisation of microfillers concentrations may be necessary. These findings suggest that the newly developed dental-based resins that incorporate microfillers could be suitable for clinical applications, but further studies are necessary to optimise the nanoparticle concentrations and investigate their long-term clinical outcomes. Full article
Show Figures

Figure 1

15 pages, 3692 KiB  
Article
Direct-Writing Electrospun Functionalized Scaffolds for Periodontal Regeneration: In Vitro Studies
by Laura Bourdon, Nina Attik, Liza Belkessam, Charlène Chevalier, Colin Bousige, Arnaud Brioude and Vincent Salles
J. Funct. Biomater. 2023, 14(5), 263; https://doi.org/10.3390/jfb14050263 - 9 May 2023
Cited by 5 | Viewed by 2983
Abstract
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical [...] Read more.
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture. The current study aimed to elaborate a biphasic scaffold using DWE based on two polycaprolactone solutions with interesting properties for bone and cement regeneration. One of the two scaffold parts contained hydroxyapatite nanoparticles (HAP) and the other contained the cementum protein 1 (CEMP1). After morphological characterizations, the elaborated scaffolds were assessed regarding periodontal ligament (PDL) cells in terms of cell proliferation, colonization, and mineralization ability. The results demonstrated that both HAP- and CEMP1-functionalized scaffolds were colonized by PDL cells and enhanced mineralization ability compared to unfunctionalized scaffolds, as revealed by alizarin red staining and OPN protein fluorescent expression. Taken together, the current data highlighted the potential of functional and organized scaffolds to stimulate bone and cementum regeneration. Moreover, DWE could be used to develop smart scaffolds with the ability to spatially control cellular orientation with suitable cellular activity at the micrometer scale, thereby enhancing periodontal and other complex tissue regeneration. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Periodontal Regeneration)
Show Figures

Figure 1

11 pages, 2588 KiB  
Article
Microleakage Evaluation of Temporary Restorations Used in Endodontic Treatment—An Ex Vivo Study
by Siri Paulo, Ana Margarida Abrantes, Mariana Xavier, Ana Filipa Brito, Ricardo Teixo, Ana Sofia Coelho, Anabela Paula, Eunice Carrilho, Maria Filomena Botelho, Carlos Miguel Marto and Manuel Marques Ferreira
J. Funct. Biomater. 2023, 14(5), 264; https://doi.org/10.3390/jfb14050264 - 9 May 2023
Cited by 3 | Viewed by 4314
Abstract
(1) Background: Coronal microleakage can lead to endodontic treatment failure. This study aimed to compare the sealing ability of different temporary restorative materials used during endodontic treatment. (2) Methods: Eighty sheep incisors were collected, uniformized in length, and access cavities were performed, except [...] Read more.
(1) Background: Coronal microleakage can lead to endodontic treatment failure. This study aimed to compare the sealing ability of different temporary restorative materials used during endodontic treatment. (2) Methods: Eighty sheep incisors were collected, uniformized in length, and access cavities were performed, except for in the negative control group, where the teeth were left intact. The teeth were divided into six different groups. In the positive control group, the access cavity was made and left empty. In the experimental groups, access cavities were restored with three different temporary materials (IRM®, Ketac™ Silver, and Cavit™) and with a definitive restorative material (Filtek Supreme™). The teeth were submitted to thermocycling, and two and four weeks later, they were infiltrated with 99mTcNaO4, and nuclear medicine imaging was performed. (3) Results: Filtek Supreme™ obtained the lowest infiltration values. Regarding the temporary materials, at two weeks, Ketac™ Silver presented the lowest infiltration, followed by IRM®, whereas Cavit™ presented the highest infiltration. At four weeks, Ketac™ Silver remained with the lowest values, whereas Cavit™ decreased the infiltration, comparable to IRM®. (4) Conclusion: Regarding temporary materials, Ketac™ Silver had the lowest infiltration at 2 and 4 weeks, whereas the highest infiltration was found in the Cavit™ group at two weeks and in the IRM® group at 4 weeks. Full article
(This article belongs to the Special Issue Advanced Materials for Clinical Endodontic Applications)
Show Figures

Figure 1

12 pages, 2657 KiB  
Article
Self-Assembling Peptide RADA16 Nanofiber Scaffold Hydrogel-Wrapped Concentrated Growth Factors in Osteogenesis of MC3T3
by Renjie Yang, Jiali Chen, Dingjie Wang, Yichen Xu and Guomin Ou
J. Funct. Biomater. 2023, 14(5), 260; https://doi.org/10.3390/jfb14050260 - 8 May 2023
Cited by 7 | Viewed by 2646
Abstract
Concentrated growth factors (CGFs) are widely used in surgery with bone grafting, but the release of growth factors from CGFs is rapid. RADA16, a self-assembling peptide, can form a scaffold that is similar to the extracellular matrix. Based on the properties of RADA16 [...] Read more.
Concentrated growth factors (CGFs) are widely used in surgery with bone grafting, but the release of growth factors from CGFs is rapid. RADA16, a self-assembling peptide, can form a scaffold that is similar to the extracellular matrix. Based on the properties of RADA16 and CGF, we hypothesized that the RADA16 nanofiber scaffold hydrogel could enhance the function of CGFs and that the RADA16 nanofiber scaffold hydrogel-wrapped CGFs (RADA16-CGFs) would perform a good osteoinductive function. This study aimed to investigate the osteoinductive function of RADA16-CGFs. Scanning electron microscopy, rheometry, and ELISA were performed, and MC3T3-E1 cells were used to test cell adhesion, cytotoxicity, and mineralization after administration with RADA16-CGFs. We found that RADA16 endowed with the sustained release of growth factors from CGFs, which can help maximize the function of CGFs in osteoinduction. The application of the atoxic RADA16 nanofiber scaffold hydrogel with CGFs can be a new therapeutic strategy for the treatment of alveolar bone loss and other problems that require bone regeneration. Full article
Show Figures

Figure 1

13 pages, 5201 KiB  
Article
Xeno-Free Biomimetic ECM Model for Investigation of Matrix Composition and Stiffness on Astrocyte Cell Response
by Bayan M. Saleh, Ayda Pourmostafa, Nashaita Y. Patrawalla and Vipuil Kishore
J. Funct. Biomater. 2023, 14(5), 256; https://doi.org/10.3390/jfb14050256 - 5 May 2023
Cited by 9 | Viewed by 2619
Abstract
Astrocytes, highly specialized glial cells, play a critical role in neuronal function. Variations in brain extracellular matrix (ECM) during development and disease can significantly alter astrocyte cell function. Age-related changes in ECM properties have been linked to neurodegenerative diseases such as Alzheimer’s disease. [...] Read more.
Astrocytes, highly specialized glial cells, play a critical role in neuronal function. Variations in brain extracellular matrix (ECM) during development and disease can significantly alter astrocyte cell function. Age-related changes in ECM properties have been linked to neurodegenerative diseases such as Alzheimer’s disease. The goal of this study was to develop hydrogel-based biomimetic ECM models with varying stiffness and evaluate the effects of ECM composition and stiffness on astrocyte cell response. Xeno-free ECM models were synthesized by combining varying ratios of human collagen and thiolated hyaluronic acid (HA) crosslinked with polyethylene glycol diacrylate. Results showed that modulating ECM composition yielded hydrogels with varying stiffnesses that match the stiffness of the native brain ECM. Collagen-rich hydrogels swell more and exhibit greater stability. Higher metabolic activity and greater cell spreading was observed in hydrogels with lower HA. Soft hydrogels trigger astrocyte activation indicated by greater cell spreading, high GFAP expression and low ALDH1L1 expression. This work presents a baseline ECM model to investigate the synergistic effects of ECM composition and stiffness on astrocytes, which could be further developed to identify key ECM biomarkers and formulate new therapies to alleviate the impact of ECM changes on the onset and progression of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Collagen-Based Materials for Biomedical Applications)
Show Figures

Figure 1

11 pages, 1925 KiB  
Article
The Influence of Polishing and Artificial Aging on BioMed Amber® Resin’s Mechanical Properties
by Anna Paradowska-Stolarz, Marcin Mikulewicz, Mieszko Wieckiewicz and Joanna Wezgowiec
J. Funct. Biomater. 2023, 14(5), 254; https://doi.org/10.3390/jfb14050254 - 2 May 2023
Cited by 4 | Viewed by 1956
Abstract
Currently, 3D print is becoming more common in all branches of medicine, including dentistry. Some novel resins, such as BioMed Amber (Formlabs), are used and incorporated to more advanced techniques. The aims of the study were to check whether or not polishing and/or [...] Read more.
Currently, 3D print is becoming more common in all branches of medicine, including dentistry. Some novel resins, such as BioMed Amber (Formlabs), are used and incorporated to more advanced techniques. The aims of the study were to check whether or not polishing and/or artificial aging influences the properties of the 3D-printed resin. A total of 240 specimens of BioMed Resin were printed. Two shapes (rectangular and dumbbell) were prepared. Of each shape, 120 specimens were divided into four groups each (with no influence, after polishing only, after artificial aging only, and after both polishing and artificial aging). Artificial aging took place in water at the temperature of 37 °C for 90 days. For testing, the universal testing machine (Z10-X700, AML Instruments, Lincoln, UK) was used. The axial compression was performed with the speed of 1mm/min. The tensile modulus was measured with the constant speed of 5 mm/min. The highest resistance to compression and tensile test were observed in the specimens that were neither polished nor aged (0.88 ± 0.03 and 2.88 ± 0.26, respectively). The lowest resistance to compression was observed in the specimens that were not polished, but aged (0.70 ± 0.02). The lowest results of the tensile test were observed when specimens were both polished and aged (2.05 ± 0.28). Both polishing and artificial aging weakened the mechanical properties of the BioMed Amber resin. The compressive modulus changed much with or without polishing. The tensile modulus differed in specimens that were either polished or aged. The application of both did not change the properties when compared to the polished or aged probes only. Full article
Show Figures

Graphical abstract

12 pages, 5064 KiB  
Article
Decellularized Scaffolds of Nopal (Opuntia Ficus-indica) for Bioengineering in Regenerative Dentistry
by Ruth Betsabe Zamudio-Ceja, Rene Garcia-Contreras, Patricia Alejandra Chavez-Granados, Benjamin Aranda-Herrera, Hugo Alvarado-Garnica, Carlos A. Jurado and Nicholas G. Fischer
J. Funct. Biomater. 2023, 14(5), 252; https://doi.org/10.3390/jfb14050252 - 1 May 2023
Cited by 5 | Viewed by 3213
Abstract
Opuntia Ficus-indica, or nopal, is traditionally used for its medicinal properties in Mexico. This study aims to decellularize and characterize nopal (Opuntia Ficus-indica) scaffolds, assess their degradation and the proliferation of hDPSC, and determine potential pro-inflammatory effects by assessing the [...] Read more.
Opuntia Ficus-indica, or nopal, is traditionally used for its medicinal properties in Mexico. This study aims to decellularize and characterize nopal (Opuntia Ficus-indica) scaffolds, assess their degradation and the proliferation of hDPSC, and determine potential pro-inflammatory effects by assessing the expression of cyclooxygenase 1 and 2 (COX-1 and 2). The scaffolds were decellularized using a 0.5% sodium dodecyl sulfate (SDS) solution and confirmed by color, optical microscopy, and SEM. The degradation rates and mechanical properties of the scaffolds were determined by weight and solution absorbances using trypsin and PBS and tensile strength testing. Human dental pulp stem cells (hDPSCs) primary cells were used for scaffold–cell interaction and proliferation assays, as well as an MTT assay to determine proliferation. Proinflammatory protein expression of COX-I and -II was discovered by Western blot assay, and the cultures were induced into a pro-inflammatory state with interleukin 1-β. The nopal scaffolds exhibited a porous structure with an average pore size of 252 ± 77 μm. The decellularized scaffolds showed a 57% reduction in weight loss during hydrolytic degradation and a 70% reduction during enzymatic degradation. There was no difference in tensile strengths between native and decellularized scaffolds (12.5 ± 1 and 11.8 ± 0.5 MPa). Furthermore, hDPSCs showed a significant increase in cell viability of 95% and 106% at 168 h for native and decellularized scaffolds, respectively. The combination of the scaffold and hDPSCs did not cause an increase in the expression of COX-1 and COX-2 proteins. However, when the combination was exposed to IL-1β, there was an increase in the expression of COX-2. This study demonstrates the potential application of nopal scaffolds in tissue engineering and regenerative medicine or dentistry, owing to their structural characteristics, degradation properties, mechanical properties, ability to induce cell proliferation, and lack of enhancement of pro-inflammatory cytokines. Full article
Show Figures

Figure 1

14 pages, 3382 KiB  
Article
Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study
by Qiang Zhi, Yuehua Zhang, Jianxu Wei, Xiaolei Lv, Shichong Qiao and Hongchang Lai
J. Funct. Biomater. 2023, 14(5), 253; https://doi.org/10.3390/jfb14050253 - 1 May 2023
Cited by 3 | Viewed by 2238
Abstract
Dental implants have become the leading choice for patients who lose teeth; however, dental implantation is challenged by peri-implant infections. Here, calcium-doped titanium was fabricated by the combinational use of thermal evaporation and electron beam evaporation in a vacuum; then, the material was [...] Read more.
Dental implants have become the leading choice for patients who lose teeth; however, dental implantation is challenged by peri-implant infections. Here, calcium-doped titanium was fabricated by the combinational use of thermal evaporation and electron beam evaporation in a vacuum; then, the material was immersed in a calcium-free phosphate-buffered saline solution containing human plasma fibrinogen and incubated at 37 °C for 1 h, creating calcium- and protein-conditioned titanium. The titanium contained 12.8 ± 1.8 at.% of calcium, which made the material more hydrophilic. Calcium release by the material during protein conditioning was able to change the conformation of the adsorbed fibrinogen, which acted against the colonization of peri-implantitis-associated pathogens (Streptococcus mutans, UA 159, and Porphyromonas gingivalis, ATCC 33277), while supporting the adhesion and growth of human gingival fibroblasts (hGFs). The present study confirms that the combination of calcium-doping and fibrinogen-conditioning is a promising pathway to meeting the clinical demand for suppressing peri-implantitis. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Figure 1

20 pages, 6487 KiB  
Article
Robocasting of Ceramic Fischer–Koch S Scaffolds for Bone Tissue Engineering
by Vail Baumer, Erin Gunn, Valerie Riegle, Claire Bailey, Clayton Shonkwiler and David Prawel
J. Funct. Biomater. 2023, 14(5), 251; https://doi.org/10.3390/jfb14050251 - 30 Apr 2023
Cited by 15 | Viewed by 3811
Abstract
Triply Periodic Minimal Surfaces (TPMS) are promising structures for bone tissue engineering scaffolds due to their relatively high mechanical energy absorption, smoothly interconnected porous structure, scalable unit cell topology, and relatively high surface area per volume. Calcium phosphate-based materials, such as hydroxyapatite and [...] Read more.
Triply Periodic Minimal Surfaces (TPMS) are promising structures for bone tissue engineering scaffolds due to their relatively high mechanical energy absorption, smoothly interconnected porous structure, scalable unit cell topology, and relatively high surface area per volume. Calcium phosphate-based materials, such as hydroxyapatite and tricalcium phosphate, are very popular scaffold biomaterials due to their biocompatibility, bioactivity, compositional similarities to bone mineral, non-immunogenicity, and tunable biodegradation. Their brittle nature can be partially mitigated by 3D printing them in TPMS topologies such as gyroids, which are widely studied for bone regeneration, as evidenced by their presence in popular 3D-printing slicers, modeling systems, and topology optimization tools. Although structural and flow simulations have predicted promising properties of other TPMS scaffolds, such as Fischer–Koch S (FKS), to the best of our knowledge, no one has explored these possibilities for bone regeneration in the laboratory. One reason for this is that fabrication of the FKS scaffolds, such as by 3D printing, is challenged by a lack of algorithms to model and slice this topology for use by low-cost biomaterial printers. This paper presents an open-source software algorithm that we developed to create 3D-printable FKS and gyroid scaffold cubes, with a framework that can accept any continuous differentiable implicit function. We also report on our successful 3D printing of hydroxyapatite FKS scaffolds using a low-cost method that combines robocasting with layer-wise photopolymerization. Dimensional accuracy, internal microstructure, and porosity characteristics are also presented, demonstrating promising potential for the 3D printing of TPMS ceramic scaffolds for bone regeneration. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

21 pages, 4431 KiB  
Article
Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells
by Zhen Zhang, Yuanliang Lv, Javad Harati, Jianan Song, Ping Du, Peiyan Ou, Jiaqi Liang, Huaiyu Wang and Peng-Yuan Wang
J. Funct. Biomater. 2023, 14(5), 238; https://doi.org/10.3390/jfb14050238 - 23 Apr 2023
Cited by 2 | Viewed by 2695
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells [...] Read more.
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Figure 1

19 pages, 3364 KiB  
Article
Antimicrobial PVA Hydrogels with Tunable Mechanical Properties and Antimicrobial Release Profiles
by Caitlyn Greene, Henry T. Beaman, Darnelle Stinfort, Maryam Ramezani and Mary Beth B. Monroe
J. Funct. Biomater. 2023, 14(4), 234; https://doi.org/10.3390/jfb14040234 - 20 Apr 2023
Cited by 6 | Viewed by 3427
Abstract
Hydrogels are broadly employed in wound healing applications due to their high water content and tissue-mimicking mechanical properties. Healing is hindered by infection in many types of wound, including Crohn’s fistulas, tunneling wounds that form between different portions of the digestive system in [...] Read more.
Hydrogels are broadly employed in wound healing applications due to their high water content and tissue-mimicking mechanical properties. Healing is hindered by infection in many types of wound, including Crohn’s fistulas, tunneling wounds that form between different portions of the digestive system in Crohn’s disease patients. Owing to the rise of drug-resistant infections, alternate approaches are required to treat wound infections beyond traditional antibiotics. To address this clinical need, we designed a water-responsive shape memory polymer (SMP) hydrogel, with natural antimicrobials in the form of phenolic acids (PAs), for potential use in wound filling and healing. The shape memory properties could allow for implantation in a low-profile shape, followed by expansion and would filling, while the PAs provide localized delivery of antimicrobials. Here, we developed a urethane-crosslinked poly(vinyl alcohol) hydrogel with cinnamic (CA), p-coumaric (PCA), and caffeic (Ca-A) acid chemically or physically incorporated at varied concentrations. We examined the effects of incorporated PAs on antimicrobial, mechanical, and shape memory properties, and on cell viability. Materials with physically incorporated PAs showed improved antibacterial properties with lower biofilm formation on hydrogel surfaces. Both modulus and elongation at break could be increased simultaneously in hydrogels after both forms of PA incorporation. Cellular response in terms of initial viability and growth over time varied based on PA structure and concentration. Shape memory properties were not negatively affected by PA incorporation. These PA-containing hydrogels with antimicrobial properties could provide a new option for wound filling, infection control, and healing. Furthermore, PA content and structure provide novel tools for tuning material properties independently of network chemistry, which could be harnessed in a range of materials systems and biomedical applications. Full article
(This article belongs to the Special Issue Biopolymer-Based Hydrogel Materials: Opportunities and Challenges)
Show Figures

Figure 1

19 pages, 8312 KiB  
Article
Development of a More Environmentally Friendly Silk Fibroin Scaffold for Soft Tissue Applications
by Nathan V. Roblin, Megan K. DeBari, Sandra L. Shefter, Erica Iizuka and Rosalyn D. Abbott
J. Funct. Biomater. 2023, 14(4), 230; https://doi.org/10.3390/jfb14040230 - 18 Apr 2023
Cited by 10 | Viewed by 3676
Abstract
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their [...] Read more.
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their associated environmental concerns. Environmentally friendly alternatives have been proposed for each processing stage; however, an integrated green fibroin scaffold approach has not been characterized or used for soft tissue applications. Here, we show that the combination of sodium hydroxide (NaOH) as a substitute degumming agent with the popular “aqueous-based” alternative silk fibroin gelation method yields fibroin scaffolds with comparable properties to traditional Na2CO3-degummed aqueous-based scaffolds. The more environmentally friendly scaffolds were found to have comparable protein structure, morphology, compressive modulus, and degradation kinetics, with increased porosity and cell seeding density relative to traditional scaffolds. Human adipose-derived stem cells showed high viability after three days of culture while seeded in each scaffold type, with uniform cell attachment to pore walls. Adipocytes from human whole adipose tissue seeded into scaffolds were found to have similar levels of lipolytic and metabolic function between conditions, in addition to a healthy unilocular morphology. Results indicate that our more environmentally friendly methodology for silk scaffold production is a viable alternative and well suited to soft tissue applications. Full article
Show Figures

Figure 1

12 pages, 23144 KiB  
Article
Construction of ZnO/PCL Antibacterial Coating Potentially for Dental Unit Waterlines
by Min Xing, Haifeng Zhang, Ling Zhang and Wenhao Qian
J. Funct. Biomater. 2023, 14(4), 225; https://doi.org/10.3390/jfb14040225 - 16 Apr 2023
Cited by 6 | Viewed by 2323
Abstract
The formation of bacterial biofilms and the contamination of treatment water within dental unit waterlines can lead to a risk of secondary bacterial infections in immunocompromised patients. Although chemical disinfectants can reduce the contamination of treatment water, they can also cause corrosion damage [...] Read more.
The formation of bacterial biofilms and the contamination of treatment water within dental unit waterlines can lead to a risk of secondary bacterial infections in immunocompromised patients. Although chemical disinfectants can reduce the contamination of treatment water, they can also cause corrosion damage to dental unit waterlines. Considering the antibacterial effect of ZnO, a ZnO-containing coating was prepared on the surface of polyurethane waterlines using polycaprolactone (PCL) with a good film-forming capacity. The ZnO-containing PCL coating improved the hydrophobicity of polyurethane waterlines, thus inhibiting the adhesion of bacteria. Moreover, the continuous slow release of Zn ions endowed polyurethane waterlines with antibacterial activity, thus effectively preventing the formation of bacterial biofilms. Meanwhile, the ZnO-containing PCL coating had good biocompatibility. The present study suggests that ZnO-containing PCL coating can realize a long-term antibacterial effect on the polyurethane waterlines by itself, providing a novel strategy for the manufacture of autonomous antibacterial dental unit waterlines. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

16 pages, 4274 KiB  
Article
Microporous Implants Modified by Bifunctional Hydrogel with Antibacterial and Osteogenic Properties Promote Bone Integration in Infected Bone Defects
by Yiping Pu, Xuecai Lin, Qiang Zhi, Shichong Qiao and Chuangqi Yu
J. Funct. Biomater. 2023, 14(4), 226; https://doi.org/10.3390/jfb14040226 - 16 Apr 2023
Cited by 5 | Viewed by 2440
Abstract
Prosthesis implantation and bone integration under bacterial infection are arduous challenges in clinical practice. It is well known that the reactive oxygen species (ROS) produced by bacterial infection around the bone defects will further hinder bone healing. To solve this problem, we prepared [...] Read more.
Prosthesis implantation and bone integration under bacterial infection are arduous challenges in clinical practice. It is well known that the reactive oxygen species (ROS) produced by bacterial infection around the bone defects will further hinder bone healing. To solve this problem, we prepared a ROS-scavenging hydrogel by cross-linking polyvinyl alcohol and a ROS-responsive linker, N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1, 3-diaminium, to modify the microporous titanium alloy implant. The prepared hydrogel was used as an advanced ROS-scavenging tool to promote bone healing by inhibiting the ROS levels around the implant. Bifunctional hydrogel serving as a drug delivery system can release therapeutic molecules, including vancomycin, to kill bacteria and bone morphogenetic protein-2 to induce bone regeneration and integration. This multifunctional implant system that combines mechanical support and disease microenvironment targeting provides a novel strategy for bone regeneration and integration of implants in infected bone defects. Full article
(This article belongs to the Special Issue Bioactive Elements for Tissue Regeneration)
Show Figures

Figure 1

16 pages, 5423 KiB  
Article
Preparation and Characterization of Gluten/SDS/Chitosan Composite Hydrogel Based on Hydrophobic and Electrostatic Interactions
by Guangfeng Li, Ni Lan, Yanling Huang, Chou Mo, Qiaoli Wang, Chaoxi Wu and Yifei Wang
J. Funct. Biomater. 2023, 14(4), 222; https://doi.org/10.3390/jfb14040222 - 14 Apr 2023
Cited by 3 | Viewed by 2828
Abstract
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite [...] Read more.
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite hydrogels by electrostatic and hydrophobic interactions. Specifically, gluten is modified by SDS to give it a negatively charged surface, and then it conjugates with positively charged chitosan to form the hydrogel. In addition, the composite formative process, surface morphology, secondary network structure, rheological property, thermal stability, and cytotoxicity are investigated. Moreover, this work demonstrates that the change can occur in surface hydrophobicity caused by the pH−eading influence of hydrogen bonds and polypeptide chains. Meanwhile, the reversible non−covalent bonding in the networks is beneficial to improving the stability of the hydrogels, which shows a prominent prospect in biomedical engineering. Full article
Show Figures

Figure 1

16 pages, 5899 KiB  
Article
Effects of Topography and PDGF on the Response of Corneal Keratocytes to Fibronectin-Coated Surfaces
by Kevin H. Lam, Tarik Z. Shihabeddin, Jacob A. Awkal, Alex M. Najjar, Miguel Miron-Mendoza, Daniel P. Maruri, Victor D. Varner, W. Matthew Petroll and David W. Schmidtke
J. Funct. Biomater. 2023, 14(4), 217; https://doi.org/10.3390/jfb14040217 - 13 Apr 2023
Cited by 5 | Viewed by 2592
Abstract
During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary [...] Read more.
During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary rabbit corneal keratocytes were cultured on substrates patterned with aligned collagen fibrils and coated with adsorbed fibronectin. After 2 or 5 days of culture, keratocytes were fixed and stained to assess changes in cell morphology and markers of myofibroblastic activation by fluorescence microscopy. Initially, adsorbed fibronectin had an activating effect on the keratocytes as evidenced by changes in cell shape, stress fiber formation, and expression of alpha-smooth muscle actin (α-SMA). The magnitude of these effects depended upon substrate topography (i.e., flat substrate vs aligned collagen fibrils) and decreased with culture time. When keratocytes were simultaneously exposed to adsorbed fibronectin and soluble platelet-derived growth factor-BB (PDGF-BB), the cells elongated and had reduced expression of stress fibers and α-SMA. In the presence of PDGF-BB, keratocytes plated on the aligned collagen fibrils elongated in the direction of the fibrils. These results provide new information on how keratocytes respond to multiple simultaneous cues and how the anisotropic topography of aligned collagen fibrils influences keratocyte behavior. Full article
Show Figures

Figure 1

15 pages, 9762 KiB  
Article
Bovine Fibroblast-Derived Extracellular Matrix Promotes the Growth and Preserves the Stemness of Bovine Stromal Cells during In Vitro Expansion
by Kathleen Lee, Anisha Jackson, Nikita John, Ryan Zhang, Derya Ozhava, Mohit Bhatia and Yong Mao
J. Funct. Biomater. 2023, 14(4), 218; https://doi.org/10.3390/jfb14040218 - 13 Apr 2023
Cited by 5 | Viewed by 3450
Abstract
Cultivated meat is a fast-growing research field and an industry with great potential to overcome the limitations of traditional meat production. Cultivated meat utilizes cell culture and tissue engineering technologies to culture a vast number of cells in vitro and grow/assemble them into [...] Read more.
Cultivated meat is a fast-growing research field and an industry with great potential to overcome the limitations of traditional meat production. Cultivated meat utilizes cell culture and tissue engineering technologies to culture a vast number of cells in vitro and grow/assemble them into structures mimicking the muscle tissues of livestock animals. Stem cells with self-renewal and lineage-specific differentiation abilities have been considered one of the key cell sources for cultivated meats. However, the extensive in vitro culturing/expansion of stem cells results in a reduction in their abilities to proliferate and differentiate. Extracellular matrix (ECM) has been used as a culturing substrate to support cell expansion for cell-based therapies in regenerative medicine due to its resemblance to the native microenvironment of cells. In this study, the effect of the ECM on the expansion of bovine umbilical cord stromal cells (BUSC) in vitro was evaluated and characterized. BUSCs with multi-lineage differentiation potentials were isolated from bovine placental tissue. Decellularized ECM prepared from a confluent monolayer of bovine fibroblasts (BF) is free of cellular components but contains major ECM proteins such as fibronectin and type I collagen and ECM-associated growth factors. Expansion of BUSC on ECM for three passages (around three weeks) resulted in about 500-fold amplification, while cells were amplified less than 10-fold when cultured on standard tissue culture plates (TCP). Moreover, the presence of ECM reduced the requirement for serum in the culture medium. Importantly, the cells amplified on ECM retained their differentiation abilities better than cells cultured on TCP. The results of our study support the notion that monolayer cell-derived ECM may be a strategy to expand bovine cells in vitro effectively and efficiently. Full article
Show Figures

Graphical abstract

14 pages, 2577 KiB  
Article
A Silicon-Based PDMS-PEG Copolymer Microfluidic Chip for Real-Time Polymerase Chain Reaction Diagnosis
by Siyu Yang, Qingyue Xian, Yiteng Liu, Ziyi Zhang, Qi Song, Yibo Gao and Weijia Wen
J. Funct. Biomater. 2023, 14(4), 208; https://doi.org/10.3390/jfb14040208 - 9 Apr 2023
Cited by 8 | Viewed by 4173
Abstract
Polydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity [...] Read more.
Polydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity and excessive gas permeability of PDMS hinder its applications in many fields. This study developed a silicon-based polydimethylsiloxane-polyethylene-glycol (PDMS-PEG) copolymer microfluidic chip, the PDMS-PEG copolymer silicon chip (PPc-Si chip), for biomolecular diagnosis. By adjusting the modifier formula for PDMS, the hydrophilic switch occurred within 15 s after contact with water, resulting in only a 0.8% reduction in transmittance after modification. In addition, we evaluated the transmittance at a wide range of wavelengths from 200 nm to 1000 nm to provide a reference for its optical property study and application in optical-related devices. The improved hydrophilicity was achieved by introducing a large number of hydroxyl groups, which also resulted in excellent bonding strength of PPc-Si chips. The bonding condition was easy to achieve and time-saving. Real-time PCR tests were successfully conducted with higher efficiency and lower non-specific absorption. This chip has a high potential for a wide range of applications in point-of-care tests (POCT) and rapid disease diagnosis. Full article
(This article belongs to the Special Issue Usage of Biopolymers in Medical Applications)
Show Figures

Graphical abstract

12 pages, 3138 KiB  
Article
Hypochlorous Acid-Activated UCNPs-LMB/VQIVYK Multifunctional Nanosystem for Alzheimer’s Disease Treatment
by Luying Qiao, Yang Shen, Guangzhi Li, Guanglei Lv and Chunxia Li
J. Funct. Biomater. 2023, 14(4), 207; https://doi.org/10.3390/jfb14040207 - 8 Apr 2023
Cited by 3 | Viewed by 1967
Abstract
The development of nanosystems, which can photooxygenate amyloid-β (Aβ), detect the Tau protein, and inhibit effectively the Tau aggregation, is increasingly important in the diagnosis and therapy of Alzheimer’s disease (AD). Herein, UCNPs-LMB/VQIVYK (UCNPs: upconversion nanoparticles, LMB: Leucomethylene blue, and VQIVYK: Biocompatible peptide) [...] Read more.
The development of nanosystems, which can photooxygenate amyloid-β (Aβ), detect the Tau protein, and inhibit effectively the Tau aggregation, is increasingly important in the diagnosis and therapy of Alzheimer’s disease (AD). Herein, UCNPs-LMB/VQIVYK (UCNPs: upconversion nanoparticles, LMB: Leucomethylene blue, and VQIVYK: Biocompatible peptide) is designed as a HOCl-controlled released nanosystem for AD synergistic treatment. Under exposure to high levels of HOCl, the released MB from UCNPs-LMB/VQIVYK will produce singlet oxygen (1O2) under red light to depolymerize Aβ aggregation and reduce cytotoxicity. Meanwhile, UCNPs-LMB/VQIVYK can act as an inhibitor to decrease Tau-induced neurotoxicity. Besides, UCNPs-LMB/VQIVYK can be used for upconversion luminescence (UCL) due to its unexceptionable luminescence properties. This HOCl-responsive nanosystem offers a new therapy for AD treatment. Full article
Show Figures

Figure 1

22 pages, 21315 KiB  
Article
Calcium Phosphate Cements Combined with Blood as a Promising Tool for the Treatment of Bone Marrow Lesions
by Maxence Limelette, Claire De Fourmestraux, Christelle Despas, Audrey Lafragette, Joelle Veziers, Yohan Le Guennec, Gwenola Touzot-Jourde, François-Xavier Lefevre, Elise Verron, Jean-Michel Bouler, Bruno Bujoli and Olivier Gauthier
J. Funct. Biomater. 2023, 14(4), 204; https://doi.org/10.3390/jfb14040204 - 7 Apr 2023
Viewed by 2091
Abstract
The solid phase of a commercial calcium phosphate (Graftys® HBS) was combined with ovine or human blood stabilized either with sodium citrate or sodium heparin. The presence of blood delayed the setting reaction of the cement by ca. 7–15 h, depending on [...] Read more.
The solid phase of a commercial calcium phosphate (Graftys® HBS) was combined with ovine or human blood stabilized either with sodium citrate or sodium heparin. The presence of blood delayed the setting reaction of the cement by ca. 7–15 h, depending on the nature of the blood and blood stabilizer. This phenomenon was found to be directly related to the particle size of the HBS solid phase, since prolonged grinding of the latter resulted in a shortened setting time (10–30 min). Even though ca. 10 h were necessary for the HBS blood composite to harden, its cohesion right after injection was improved when compared to the HBS reference as well as its injectability. A fibrin-based material was gradually formed in the HBS blood composite to end-up, after ca. 100 h, with a dense 3D organic network present in the intergranular space, thus affecting the microstructure of the composite. Indeed, SEM analyses of polished cross-sections showed areas of low mineral density (over 10–20 µm) spread in the whole volume of the HBS blood composite. Most importantly, when the two cement formulations were injected in the tibial subchondral cancellous bone in a bone marrow lesion ovine model, quantitative SEM analyses showed a highly significant difference between the HBS reference versus its analogue combined with blood. After a 4-month implantation, histological analyses clearly showed that the HBS blood composite underwent high resorption (remaining cement: ca. 13.1 ± 7.3%) and new bone formation (newly formed bone: 41.8 ± 14.7%). This was in sharp contrast with the case of the HBS reference for which a low resorption rate was observed (remaining cement: 79.0 ± 6.9%; newly formed bone: 8.6 ± 4.8%). This study suggested that the particular microstructure, induced by the use of blood as the HBS liquid phase, favored quicker colonization of the implant and acceleration of its replacement by newly formed bone. For this reason, the HBS blood composite might be worth considering as a potentially suitable material for subchondroplasty. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates 2.0)
Show Figures

Figure 1

12 pages, 16716 KiB  
Article
Tropoelastin-Pretreated Exosomes from Adipose-Derived Stem Cells Improve the Synthesis of Cartilage Matrix and Alleviate Osteoarthritis
by Shuo Meng, Cong Tang, Muhai Deng, Jie Yuan, Yanli Fan, Shasha Gao, Yong Feng, Junjun Yang and Cheng Chen
J. Funct. Biomater. 2023, 14(4), 203; https://doi.org/10.3390/jfb14040203 - 6 Apr 2023
Cited by 18 | Viewed by 2845
Abstract
Mesenchymal stem cells (MSCs) have recently been widely used to treat osteoarthritis (OA). Our prior research shows that tropoelastin (TE) increases MSC activity and protects knee cartilage from OA-related degradation. The underlying mechanism might be that TE regulates the paracrine of MSCs. Exosomes [...] Read more.
Mesenchymal stem cells (MSCs) have recently been widely used to treat osteoarthritis (OA). Our prior research shows that tropoelastin (TE) increases MSC activity and protects knee cartilage from OA-related degradation. The underlying mechanism might be that TE regulates the paracrine of MSCs. Exosomes (Exos), the paracrine secretion of MSCs, have been found to protect chondrocytes, reduce inflammation, and preserve the cartilage matrix. In this study, we used Exos derived from TE-pretreated adipose-derived stem cells (ADSCs) (TE-ExoADSCs) as an injection medium, and compared it with Exos derived from unpretreated ADSCs (ExoADSCs). We found that TE-ExoADSCs could effectively enhance the matrix synthesis of chondrocytes in vitro. Moreover, TE pretreatment increased the ability of ADSCs to secrete Exos. In addition, compared with ExoADSCs, TE-ExoADSCs exhibited therapeutic effects in the anterior cruciate ligament transection (ACLT)-induced OA model. Further, we observed that TE altered the microRNA expression in ExoADSCs and identified one differentially upregulated microRNA: miR-451-5p. In conclusion, TE-ExoADSCs helped maintain the chondrocyte phenotype in vitro, and promoted cartilage repair in vivo. These therapeutic effects might be related with the altered expression of miR-451-5p in the ExoADSCs. Thus, the intra-articular delivery of Exos derived from ADSCs with TE pretreatment could be a new approach to treat OA. Full article
Show Figures

Figure 1

16 pages, 6782 KiB  
Article
Microwave-Assisted Incorporation of AgNP into Chitosan–Alginate Hydrogels for Antimicrobial Applications
by Takuma Oe, Duangkamol Dechojarassri, Sachiro Kakinoki, Hideya Kawasaki, Tetsuya Furuike and Hiroshi Tamura
J. Funct. Biomater. 2023, 14(4), 199; https://doi.org/10.3390/jfb14040199 - 4 Apr 2023
Cited by 11 | Viewed by 3448
Abstract
Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA) and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial activity. Unlike ascorbic [...] Read more.
Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA) and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial activity. Unlike ascorbic acid, the microwave-assisted method produced uniform and stable SA-AgNPs with an optimal reaction time of 8 min. Transmission electron microscopy (TEM) confirmed the formation of SA-AgNPs with an average particle size of 9 ± 2 nm. Moreover, UV-vis spectroscopy confirmed the optimal conditions for SA-AgNP synthesis (0.5% SA, 50 mM AgNO3, and pH 9 at 80 °C). Fourier transform infrared (FTIR) spectroscopy confirmed that the –COO group of SA electrostatically interacted with either the Ag+ or –NH3+ of CS. Adding glucono-δ-lactone (GDL) to the mixture of SA-AgNPs/CS resulted in a low pH (below the pKa of CS). An SA-AgNPs/CS gel was formed successfully and retained its shape. This hydrogel exhibited 25 ± 2 mm and 21 ± 1 mm inhibition zones against E. coli and B. subtilis and showed low cytotoxicity. Additionally, the SA-AgNP/CS gel showed higher mechanical strength than SA/CS gels, possibly due to the higher crosslink density. In this work, a novel antibacterial hydrogel system was synthesized via 8 min of microwave heating. Full article
(This article belongs to the Special Issue Biomedical Applications of Chitin and Chitosan-II)
Show Figures

Figure 1

14 pages, 1979 KiB  
Article
Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina
by Ranganathan Arunkumar and Vallikannan Baskaran
J. Funct. Biomater. 2023, 14(4), 197; https://doi.org/10.3390/jfb14040197 - 3 Apr 2023
Cited by 5 | Viewed by 2071
Abstract
Lutein, a photo- and thermo-labile macular pigment, prevents the retina from suffering ocular inflammation with its antioxidant and anti-inflammatory activity. However, its biological activity is poor due to poor solubility and bioavailability. Therefore, we developed a PLGA NCs (+PL), (poly (lactic-co-glycolic [...] Read more.
Lutein, a photo- and thermo-labile macular pigment, prevents the retina from suffering ocular inflammation with its antioxidant and anti-inflammatory activity. However, its biological activity is poor due to poor solubility and bioavailability. Therefore, we developed a PLGA NCs (+PL), (poly (lactic-co-glycolic acid) nanocarrier with phospholipid) to improve the biological availability and bioefficacy of lutein in the retina of lipopolysaccharide (LPS)-induced lutein-devoid (LD) mice. The effect of lutein-loaded NCs with/without PL was studied in comparison with micellar lutein. The induction of inflammation by LPS significantly increased the production of nitrites in the LPS-induced group, revealing higher levels of nitric oxide (NO) in the serum (760%) and retina (891%) compared to the control group. Malondialdehyde (MDA) levels in the serum (93%) and retina (205%) of the LPS-induced group were higher compared to the control group. LPS induction resulted in increased protein carbonyls in the serum (481%) and retina (487%) of the LPS group compared to the control group. Further, to conclude, lutein-PLGA NCs (+PL) effectively down-regulated inflammatory complications in the retina. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

18 pages, 5366 KiB  
Article
Nanoscale Polishing Technique of Biomedical Grade NiTi Wire by Advanced MAF Process: Relationship between Surface Roughness and Bacterial Adhesion
by Se Rim Jang, Il Won Suh and Lida Heng
J. Funct. Biomater. 2023, 14(4), 177; https://doi.org/10.3390/jfb14040177 - 23 Mar 2023
Cited by 12 | Viewed by 2973
Abstract
Nitinol (NiTi), an alloy of nickel and titanium, wires are an important biomedical material that has been used in catheter tubes, guidewires, stents, and other surgical instruments. As such wires are temporarily or permanently inserted inside the human body, their surfaces need to [...] Read more.
Nitinol (NiTi), an alloy of nickel and titanium, wires are an important biomedical material that has been used in catheter tubes, guidewires, stents, and other surgical instruments. As such wires are temporarily or permanently inserted inside the human body, their surfaces need to be smoothed and cleaned in order to prevent wear, friction, and adhesion of bacteria. In this study, NiTi wire samples of micro-scale diameters (i.e., Ø 200 μm and Ø 400 μm) were polished by an advanced magnetic abrasive finishing (MAF) process using a nanoscale polishing method. Furthermore, bacterial adhesion (i.e., Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus)) to the initial and final surfaces of NiTi wires were investigated and compared in order to assess the impact of surface roughness on bacterial adhesion to the surfaces of NiTi wires. The finding revealed that the surfaces of NiTi wires were clean and smooth with a lack of particle impurities and toxic components on the final surface polished using the advanced MAF process. The surface roughness Ra values of the Ø 200 μm and Ø 400 μm NiTi wires were smoothly enhanced to 20 nm and 30 nm from the 140 nm and 280 nm initial surface roughness values. Importantly, polishing the surfaces of a biomedical material such as NiTi wire to nano-level roughness can significantly reduce bacterial adhesion on the surface by more than 83.48% in the case of S. aureus, while in the case of E. coli was more than 70.67%. Full article
Show Figures

Figure 1

12 pages, 3639 KiB  
Article
Fluoride Retention in Root Dentin following Surface Coating Material Application
by Katsushi Okuyama, Yasuhiro Matsuda, Hiroko Yamamoto, Kohtaku Suzuki, Kohei Shintani, Takashi Saito, Mikako Hayashi and Yukimichi Tamaki
J. Funct. Biomater. 2023, 14(3), 171; https://doi.org/10.3390/jfb14030171 - 22 Mar 2023
Cited by 2 | Viewed by 2147
Abstract
This study aimed to use an in-air micro-particle-induced X-ray/gamma emission (in-air µPIXE/PIGE) system to evaluate tooth-bound fluoride (T-F) in dentin following the application of fluoride-containing tooth-coating materials. Three fluoride-containing coating materials (PRG Barrier Coat, Clinpro XT varnish, and Fuji IX EXTRA) and a [...] Read more.
This study aimed to use an in-air micro-particle-induced X-ray/gamma emission (in-air µPIXE/PIGE) system to evaluate tooth-bound fluoride (T-F) in dentin following the application of fluoride-containing tooth-coating materials. Three fluoride-containing coating materials (PRG Barrier Coat, Clinpro XT varnish, and Fuji IX EXTRA) and a control were applied to the root dentin surface of human molars (n = 6, total 48 samples). Samples were stored in a remineralizing solution (pH 7.0) for 7 or 28 days and then sectioned into two adjacent slices. One slice of each sample was immersed in 1M potassium hydroxide (KOH) solution for 24 h and rinsed with water for 5 min for the T-F analysis. The other slice did not undergo KOH treatment and was used to analyze the total fluoride content (W-F). The fluoride and calcium distributions were measured in all the slices using an in-air µPIXE/PIGE. Additionally, the amount of fluoride released from each material was measured. Clinpro XT varnish demonstrated the highest fluoride release among all the materials and tended to show high W-F and T-F and lower T-F/W-F ratios. Our study demonstrates that a high fluoride-releasing material shows high fluoride distribution into the tooth structure and low conversion from fluoride uptake by tooth-bound fluoride. Full article
(This article belongs to the Special Issue State of the Art in Dental Materials)
Show Figures

Figure 1

13 pages, 3532 KiB  
Article
Can Zeolite-Supporting Acridines Boost Their Anticancer Performance?
by Maja Ranković, Anka Jevremović, Aleksandra Janošević Ležaić, Aleksandar Arsenijević, Jelena Rupar, Vladimir Dobričić, Bojana Nedić Vasiljević, Nemanja Gavrilov, Danica Bajuk-Bogdanović and Maja Milojević-Rakić
J. Funct. Biomater. 2023, 14(3), 173; https://doi.org/10.3390/jfb14030173 - 22 Mar 2023
Cited by 4 | Viewed by 2465
Abstract
Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. [...] Read more.
Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. The effects of the tested compounds on cell viability were evaluated using in vitro methylthiazol-tetrazolium (MTT) colorimetric technique against human colorectal carcinoma (cell line HCT-116) and MRC-5 fibroblasts. Zeolite structure remained unchanged during homogeneous drug impregnation with achieved drug loadings in the 18–21 mg/g range. The highest drug release, in the µM concentration range, with favourable kinetics was established for zeolite-supported 9-aminoacridine. The acridine delivery via zeolite carrier is viewed in terms of solvation energy and zeolite adsorption sites. The cytotoxic effect of supported acridines on HCT-116 cells reveals that the zeolite carrier improves toxicity, while the highest efficiency is displayed by zeolite-impregnated 9-aminoacridine. The 9-aminoacridine delivery via zeolite carrier favours healthy tissue preservation while accompanying increased toxicity toward cancer cells. Cytotoxicity results are well correlated with theoretical modelling and release study, providing promising results for applicative purposes. Full article
(This article belongs to the Special Issue Nanomaterials and Their Biomedical Applications)
Show Figures

Graphical abstract

24 pages, 4499 KiB  
Article
Functionalized Halloysite Nanotubes as Potential Drug Carriers
by Ewa Stodolak-Zych, Alicja Rapacz-Kmita, Marcin Gajek, Agnieszka Różycka, Magdalena Dudek and Stanisława Kluska
J. Funct. Biomater. 2023, 14(3), 167; https://doi.org/10.3390/jfb14030167 - 21 Mar 2023
Cited by 8 | Viewed by 2155
Abstract
The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but [...] Read more.
The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but also on the biocidal properties of the carriers. In order to fully examine the halloysite in terms of the possibility of gentamicin incorporating, a number of modifications of the native halloysite were carried out prior to gentamicin intercalation with the use of sodium alkali, sulfuric and phosphoric acids, curcumin and the process of delamination of nanotubes (expanded halloysite) with ammonium persulfate in sulfuric acid. Gentamicin was added to unmodified and modified halloysite in an amount corresponding to the cation exchange capacity of pure halloysite from the Polish Dunino deposit, which was the reference sample for all modified carriers. The obtained materials were tested to determine the effect of surface modification and their interaction with the introduced antibiotic on the biological activity of the carrier, kinetics of drug release, as well as on the antibacterial activity against Escherichia coli Gram-negative bacteria (reference strain). For all materials, structural changes were examined using infrared spectroscopy (FTIR) and X-ray diffraction (XRD); thermal differential scanning calorimetry with thermogravimetric analysis (DSC/TG) was performed as well. The samples were also observed for morphological changes after modification and drug activation by transmission electron microscopy (TEM). The conducted tests clearly show that all samples of halloysite intercalated with gentamicin showed high antibacterial activity, with the highest antibacterial activity for the sample modified with sodium hydroxide and intercalated with the drug. It was found that the type of halloysite surface modification has a significant effect on the amount of gentamicin intercalated and then released into the surrounding environment but does not significantly affect its ability to further influence drug release over time. The highest amount of drug released among all intercalated samples was recorded for halloysite modified with ammonium persulfate (real loading efficiency above 11%), for which high antibacterial activity was found after surface modification, before drug intercalation. It is also worth noting that intrinsic antibacterial activity was found for non-drug-intercalated materials after surface functionalization with phosphoric acid (V) and ammonium persulfate in the presence of sulfuric acid (V). Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

21 pages, 3653 KiB  
Article
Ketoprofen-Based Polymer-Drug Nanoparticles Provide Anti-Inflammatory Properties to HA/Collagen Hydrogels
by Norbert Halfter, Eva Espinosa-Cano, Gloria María Pontes-Quero, Rosa Ana Ramírez-Jiménez, Christiane Heinemann, Stephanie Möller, Matthias Schnabelrauch, Hans-Peter Wiesmann, Vera Hintze and Maria Rosa Aguilar
J. Funct. Biomater. 2023, 14(3), 160; https://doi.org/10.3390/jfb14030160 - 17 Mar 2023
Cited by 10 | Viewed by 2719
Abstract
Current limitations of wound dressings for treating chronic wounds require the development of novel approaches. One of these is the immune-centered approach, which aims to restore the pro-regenerative and anti-inflammatory properties of macrophages. Under inflammatory conditions, ketoprofen nanoparticles (KT NPs) can reduce pro-inflammatory [...] Read more.
Current limitations of wound dressings for treating chronic wounds require the development of novel approaches. One of these is the immune-centered approach, which aims to restore the pro-regenerative and anti-inflammatory properties of macrophages. Under inflammatory conditions, ketoprofen nanoparticles (KT NPs) can reduce pro-inflammatory markers of macrophages and increase anti-inflammatory cytokines. To assess their suitability as part of wound dressings, these NPs were combined with hyaluronan (HA)/collagen-based hydro- (HGs) and cryogels (CGs). Different HA and NP concentrations and loading techniques for NP incorporation were used. The NP release, gel morphology, and mechanical properties were studied. Generally, colonialization of the gels with macrophages resulted in high cell viability and proliferation. Furthermore, direct contact of the NPs to the cells reduced the level of nitric oxide (NO). The formation of multinucleated cells on the gels was low and further decreased by the NPs. For the HGs that produced the highest reduction in NO, extended ELISA studies showed reduced levels of the pro-inflammatory markers PGE2, IL-12 p40, TNF-α, and IL-6. Thus, HA/collagen-based gels containing KT NPs may represent a novel therapeutic approach for treating chronic wounds. Whether effects observed in vitro translate into a favorable profile on skin regeneration in vivo will require rigorous testing. Full article
Show Figures

Graphical abstract

Back to TopTop