Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Lutein-PLGA NCs (+PL)
2.3. Preparation of Mixed Micelles
2.4. Experimental Design
2.5. Measurement of Nitric Oxide (NO)
2.6. Estimation of Protein Carbonyls
2.7. Measurement of Serum Cytokines, PGE2, and NF-κB
2.8. Antioxidant Assays and Lipid Peroxidation
2.9. Western Blot
2.10. Extraction and Quantification of Lutein from Serum and Retina
2.11. Statistical Analysis
3. Results
3.1. Effect of Lutein-PLGA NCs (+PL) on Nitric Oxide (NO) Levels
3.2. Effect of Lutein-PLGA NCs (+PL) on MDA Levels
3.3. Effect of Lutein-PLGA NCs (+PL) on Protein Carbonyl Levels
3.4. Effect of Lutein-PLGA NCs (+PL) on Antioxidant Enzymes and Molecules
3.5. Effect of Lutein-PLGA NCs (+PL) on Cytokines and Prostaglandins
3.6. Effect of Lutein-PLGA NCs (+PL) on iNOS, COX-2, and NF-κB Activity in Mice Retina
3.7. Bioavailability of Lutein from PLGA NCs (+PL) in LPS-Induced Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kauppinen, A.; Paterno, J.J.; Blasiak, J.; Salminen, A.; Kaarniranta, K. Inflammation and Its Role in Age-Related Macular Degeneration. Cell Mol. Life Sci. 2016, 73, 1765–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, J.T.; McDevitt, H.O.; Guss, R.B.; Egbert, P.R. Endotoxin-Induced Uveitis in Rats as a Model for Human Disease. Nature 1980, 286, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Pengal, R.A.; Cao, X.; Ganesan, L.P.; Wewers, M.D.; Marsh, C.B.; Tridandapani, S. Lipopolysaccharide-Induced Macrophage Inflammatory Response Is Regulated by SHIP. J. Immunol. 2004, 173, 360–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzypczak-Wiercioch, A.; Sałat, K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022, 27, 5481. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Kang, M.-J.; Jo, M.J.; Seo, Y.B.; Park, N.G.; Kim, G.-D. Anti-Inflammatory Activity of β-Thymosin Peptide Derived from Pacific Oyster (Crassostrea gigas) on NO and PGE2 Production by Down-Regulating NF-ΚB in LPS-Induced RAW264.7 Macrophage Cells. Mar. Drugs 2019, 17, 129. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.-H.; Ohgami, K.; Shiratori, K.; Suzuki, Y.; Koyama, Y.; Yoshida, K.; Ilieva, I.; Tanaka, T.; Onoe, K.; Ohno, S. Effects of Blue Honeysuckle (Lonicera caerulea L.) Extract on Lipopolysaccharide-Induced Inflammation in Vitro and in Vivo. Exp. Eye Res. 2006, 82, 860–867. [Google Scholar] [CrossRef]
- Zhang, G.; Ghosh, S. Toll-like Receptor-Mediated NF-KappaB Activation: A Phylogenetically Conserved Paradigm in Innate Immunity. J. Clin. Investig. 2001, 107, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Hyun, E.-A.; Yoon, W.J.; Kim, B.H.; Rhee, M.H.; Kang, H.K.; Cho, J.Y.; Yoo, E.S. In vitro Anti-Inflammatory and Anti-Oxidative Effects of Cinnamomum Camphora Extracts. J. Ethnopharmacol. 2006, 103, 208–216. [Google Scholar] [CrossRef]
- Demir, D.; Yılmaz, T.; İlhan, N.; Yekeler, H.; Aydemir, O.; Kükner, A.Ş. Protective Role of Alpha-Tocopherol on Retinal Injury in Experimental Uveitis in Guinea Pigs. Pathophysiology 2006, 13, 75–79. [Google Scholar] [CrossRef]
- Yadav, U.C.S.; Kalariya, N.M.; Ramana, K.V. Emerging Role of Antioxidants in the Protection of Uveitis Complications. Curr. Med. Chem. 2011, 18, 931–942. [Google Scholar] [CrossRef]
- Bone, R.; Landrum, J.; Hime, G.; Cains, A.; Zamor, J. Stereochemistry of the Human Macular Carotenoids. Investig. Ophthalmol. Vis. Sci. 1993, 34, 2033–2040. [Google Scholar]
- Arunkumar, R.; Gorusupudi, A.; Bernstein, P.S. The Macular Carotenoids: A Biochemical Overview. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158617. [Google Scholar] [CrossRef]
- Jin, X.-H.; Ohgami, K.; Shiratori, K.; Suzuki, Y.; Hirano, T.; Koyama, Y.; Yoshida, K.; Ilieva, I.; Iseki, K.; Ohno, S. Inhibitory Effects of Lutein on Endotoxin-Induced Uveitis in Lewis Rats. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2562–2568. [Google Scholar] [CrossRef]
- Arunkumar, R.; Gorusupudi, A.; Li, B.; Blount, J.D.; Nwagbo, U.; Kim, H.J.; Sparrow, J.R.; Bernstein, P.S. Lutein and Zeaxanthin Reduce A2E and Iso-A2E Levels and Improve Visual Performance in Abca4-/-/Bco2-/- Double Knockout Mice. Exp. Eye Res. 2021, 209, 108680. [Google Scholar] [CrossRef]
- Arunkumar, R.; Harish Prashanth, K.V.; Baskaran, V. Promising Interaction between Nanoencapsulated Lutein with Low Molecular Weight Chitosan: Characterization and Bioavailability of Lutein in vitro and in vivo. Food Chem. 2013, 141, 327–337. [Google Scholar] [CrossRef]
- Ranganathan, A.; Manabe, Y.; Sugawara, T.; Hirata, T.; Shivanna, N.; Baskaran, V. Poly (d, l-Lactide-Co-Glycolide)-Phospholipid Nanocarrier for Efficient Delivery of Macular Pigment Lutein: Absorption Pharmacokinetics in Mice and Antiproliferative Effect in Hep G2 Cells. Drug Deliv. Transl. Res. 2019, 9, 178–191. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods Enzym. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. Assays of Glutathione Peroxidase. In Oxygen Radicals in Biological Systems; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 114–120. [Google Scholar]
- Flohé, L.; Ötting, F. Superoxide Dismutase Assays. In Oxygen Radicals in Biological Systems; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 93–104. [Google Scholar]
- Smith, I.K.; Vierheller, T.L.; Thorne, C.A. Assay of Glutathione Reductase in Crude Tissue Homogenates Using 5,5′-Dithiobis(2-Nitrobenzoic Acid). Anal. Biochem. 1988, 175, 408–413. [Google Scholar] [CrossRef]
- Guthenberg, C.; Ålin, P.; Mannervik, B. Glutathione Transferase from Rat Testis. In Glutamate, Glutamine, Glutathione, and Related Compounds; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1985; Volume 113, pp. 507–510. [Google Scholar]
- Owens, C.W.; Belcher, R.V. A colorimetric micro-method for the determination of glutathione. Biochem. J. 1965, 94, 705–711. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Slakter, J.S.; Stur, M. Quality of Life in Patients with Age-Related Macular Degeneration: Impact of the Condition and Benefits of Treatment. Surv. Ophthalmol. 2005, 50, 263–273. [Google Scholar] [CrossRef]
- Zarbin, M.A. Current Concepts in the Pathogenesis of Age-Related Macular Degeneration. Arch. Ophthalmol. 2004, 122, 598–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.-R.; Tsoi, B.; Lan, F.; Yao, N.; Yao, X.-S.; Kurihara, H. Antioxidant Properties of Lutein Contribute to the Protection against Lipopolysaccharide-Induced Uveitis in Mice. Chin. Med. 2011, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Nidhi, B.; Sharavana, G.; Ramaprasad, T.R.; Vallikannan, B. Lutein Derived Fragments Exhibit Higher Antioxidant and Anti-Inflammatory Properties than Lutein in Lipopolysaccharide Induced Inflammation in Rats. Food Funct. 2015, 6, 450–460. [Google Scholar] [CrossRef]
- Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol. Med. 2000, 6, 347–373. [Google Scholar] [CrossRef] [Green Version]
- Ischiropoulos, H.; Al-Mehdi, A.B. Peroxynitrite-Mediated Oxidative Protein Modifications. FEBS Lett. 1995, 364, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Li, Y.; Wu, Y.; Zhang, Y.; Wang, Z.; Liu, X. Lutein Suppresses Inflammatory Responses through Nrf2 Activation and NF-ΚB Inactivation in Lipopolysaccharide-Stimulated BV-2 Microglia. Mol. Nutr. Food Res. 2015, 59, 1663–1673. [Google Scholar] [CrossRef]
- Krinsky, N.I. Carotenoids as Antioxidants. Nutrition 2001, 17, 815–817. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant Activity of Carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Salvemini, D.; Manning, P.T.; Zweifel, B.S.; Seibert, K.; Connor, J.; Currie, M.G.; Needleman, P.; Masferrer, J.L. Dual Inhibition of Nitric Oxide and Prostaglandin Production Contributes to the Antiinflammatory Properties of Nitric Oxide Synthase Inhibitors. J. Clin. Investig. 1995, 96, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Na, H.-J.; Kim, C.-K.; Kim, J.-Y.; Ha, K.-S.; Lee, H.; Chung, H.-T.; Kwon, H.J.; Kwon, Y.-G.; Kim, Y.-M. The Non-Provitamin A Carotenoid, Lutein, Inhibits NF-KappaB-Dependent Gene Expression through Redox-Based Regulation of the Phosphatidylinositol 3-Kinase/PTEN/Akt and NF-KappaB-Inducing Kinase Pathways: Role of H(2)O(2) in NF-KappaB Activation. Free Radic. Biol. Med. 2008, 45, 885–896. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, Oxidative Stress and the Biology of Ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Renard, P.; Raes, M. The Proinflammatory Transcription Factor NFkappaB: A Potential Target for Novel Therapeutical Strategies. Cell Biol. Toxicol. 1999, 15, 341–344. [Google Scholar] [CrossRef]
- Izumi-Nagai, K.; Nagai, N.; Ohgami, K.; Satofuka, S.; Ozawa, Y.; Tsubota, K.; Umezawa, K.; Ohno, S.; Oike, Y.; Ishida, S. Macular Pigment Lutein Is Antiinflammatory in Preventing Choroidal Neovascularization. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2555–2562. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
Parameters | Control | LPS | Micellar Lutein | PLGA NCs (−PL) | PLGANCs (+PL) |
---|---|---|---|---|---|
Serum | |||||
CAT (µmol/min/mg protein) | 1.30 ± 0.2 a | 0.56 ± 0.1 b | 0.88 ± 0.1 c | 1.04 ± 0.2 c | 1.22 ± 0.2 ac |
SOD (U/mg/protein) | 1.86 ± 0.2 a | 0.72 ± 0.2 b | 1.23 ± 0.3 c | 1.49 ± 0.3 d | 1.72 ± 0.2 ac |
GPx (µmol/min/mg protein) | 2.07 ± 0.4 a | 0.93 ± 0.3 b | 1.37 ± 0.4 c | 1.67 ± 0.5 d | 1.94 ± 0.4 a |
GR (µmol/min/mg protein) | 3.1 ± 0.6 a | 1.17 ± 0.2 b | 1.99 ± 0.2 c | 2.42 ± 0.3 d | 2.85 ± 0.3 ad |
GSH (µg/mL) | 42.1 ± 3.5 a | 17.3 ± 1.2 b | 28.4 ± 2.3 c | 32.7 ± 2.7 c | 39.3 ± 3.2 a |
Retina | |||||
CAT (µmol/min/mg protein) | 4.06 ± 0.5 a | 1.79 ± 0.2 b | 2.81 ± 0.2 c | 3.30 ± 0.3 d | 3.87 ± 0.2 ad |
SOD (U/mg/protein) | 5.04 ± 0.4 a | 2.11 ± 0.4 b | 3.36 ± 0.5 c | 4.08 ± 0.6 d | 4.78 ± 0.7 e |
GPx (µmol/min/mg protein) | 6.21 ± 0.5 a | 2.85 ± 0.3 b | 3.38 ± 0.3 b | 4.79 ± 0.6 c | 6.04 ± 0.9 a |
GR (µmol/min/mg protein) | 9.92 ± 0.7 a | 3.86 ± 0.3 b | 6.48 ± 0.5 c | 7.82 ± 0.5 c | 9.53 ± 0.6 a |
GSH (µg/mL) | 15.30 ± 2.3 a | 6.10 ± 3.4 b | 10.04 ± 4.2 c | 12.23 ± 4.0 c | 14.52 ± 3.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunkumar, R.; Baskaran, V. Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina. J. Funct. Biomater. 2023, 14, 197. https://doi.org/10.3390/jfb14040197
Arunkumar R, Baskaran V. Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina. Journal of Functional Biomaterials. 2023; 14(4):197. https://doi.org/10.3390/jfb14040197
Chicago/Turabian StyleArunkumar, Ranganathan, and Vallikannan Baskaran. 2023. "Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina" Journal of Functional Biomaterials 14, no. 4: 197. https://doi.org/10.3390/jfb14040197
APA StyleArunkumar, R., & Baskaran, V. (2023). Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina. Journal of Functional Biomaterials, 14(4), 197. https://doi.org/10.3390/jfb14040197