Special Issue "Biomaterial-Related Infections"

A special issue of Journal of Clinical Medicine (ISSN 2077-0383). This special issue belongs to the section "Infectious Diseases".

Deadline for manuscript submissions: closed (5 November 2019).

Special Issue Editors

Dr. Célia F. Rodrigues
E-Mail Website
Guest Editor
LEPABE - Laboratory for Process Engineering Environment Biotechnology and Energy, Dep. Chemical Engineering, Faculty of Engineering -University of Porto, Portugal
Interests: biofilms; fungal and bacterial infections; resistance to antimicrobials; microfluidics; pathogens detection; alternative therapies; surface functionalization of biomaterials
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections, due to the colonization of their abiotic surfaces by biofilm‐growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods have been developed to combat device‐related infections, based on anti‐infective biomaterials that repel microbes. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) have been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others to find new biomaterials, characterized by antifouling coatings, with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings, which are capable of killing microbes, approaching the surface, improving biomaterials’ functionalization strategies, and supporting tissues’ bio-integration.

We welcome you to join us in this effort. Review and original research articles are welcome. We look forward to receiving your contributions.

Prof. Dr. Natália Martins
Dr. Célia F. Rodrigues
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Clinical Medicine is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Surface coating
  • Resistant pathogens
  • Biofilm
  • Antimicrobial
  • Drug delivery
  • Antifouling coating
  • Natural compound
  • Device-related infection
  • Inorganic element

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Parameters Affecting the Antimicrobial Properties of Cold Atmospheric Plasma Jet
J. Clin. Med. 2019, 8(11), 1930; https://doi.org/10.3390/jcm8111930 - 09 Nov 2019
Abstract
Using the Taguchi method to narrow experimental parameters, the antimicrobial efficiency of a cold atmospheric plasma jet (CAPJ) treatment was investigated. An L9 array with four parameters of CAPJ treatments, including the application voltage, CAPJ-sample distance, argon (Ar) gas flow rate, and CAPJ [...] Read more.
Using the Taguchi method to narrow experimental parameters, the antimicrobial efficiency of a cold atmospheric plasma jet (CAPJ) treatment was investigated. An L9 array with four parameters of CAPJ treatments, including the application voltage, CAPJ-sample distance, argon (Ar) gas flow rate, and CAPJ treatment time, were applied to examine the antimicrobial activity against Escherichia coli (E. coli). CAPJ treatment time was found to be the most influential parameter in its antimicrobial ability by evaluation of signal to noise ratios and analysis of variance. 100% bactericidal activity was achieved under the optimal bactericidal activity parameters including the application voltage of 8.5 kV, CAPJ-sample distance of 10 mm, Ar gas flow rate of 500 sccm, and CAPJ treatment time of 300 s, which confirms the efficacy of the Taguchi method in this design. In terms of the mechanism of CAPJ’s antimicrobial ability, the intensity of hydroxyl radical produced by CAPJ positively correlated to its antimicrobial efficiency. The CAPJ antimicrobial efficiency was further evaluated by both DNA double-strand breaks analysis and scanning electron microscopy examination of CAPJ treated bacteria. CAPJ destroyed the cell wall of E. coli and further damaged its DNA structure, thus leading to successful killing of bacteria. This study suggests that optimal conditions of CPAJ can provide effective antimicrobial activity and may be grounds for a novel approach for eradicating bacterial infections. Full article
(This article belongs to the Special Issue Biomaterial-Related Infections)
Show Figures

Figure 1

Open AccessArticle
Electrospun Polyethylene Terephthalate Nanofibers Loaded with Silver Nanoparticles: Novel Approach in Anti-Infective Therapy
J. Clin. Med. 2019, 8(7), 1039; https://doi.org/10.3390/jcm8071039 - 16 Jul 2019
Abstract
Polyethylene terephthalate (PET) is a major pollutant polymer, due to its wide use in food packaging and fiber production industries worldwide. Currently, there is great interest for recycling the huge amount of PET-based materials, derived especially from the food and textile industries. In [...] Read more.
Polyethylene terephthalate (PET) is a major pollutant polymer, due to its wide use in food packaging and fiber production industries worldwide. Currently, there is great interest for recycling the huge amount of PET-based materials, derived especially from the food and textile industries. In this study, we applied the electrospinning technique to obtain nanostructured fibrillary membranes based on PET materials. Subsequently, the recycled PET networks were decorated with silver nanoparticles through the chemical reduction method for antimicrobial applications. After the characterization of the materials in terms of crystallinity, chemical bonding, and morphology, the effect against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated. Furthermore, in vitro and in vivo biocompatibility tests were performed in order to open up potential biomedical applications, such as wound dressings or implant coatings. Silver-decorated fibers showed lower cytotoxicity and inflammatory effects and increased antibiofilm activity, thus highlighting the potential of these systems for antimicrobial purposes. Full article
(This article belongs to the Special Issue Biomaterial-Related Infections)
Show Figures

Figure 1

Open AccessArticle
“To Be Microbiocidal and Not to Be Cytotoxic at the Same Time…”—Silver Nanoparticles and Their Main Role on the Surface of Titanium Alloy Implants
J. Clin. Med. 2019, 8(3), 334; https://doi.org/10.3390/jcm8030334 - 10 Mar 2019
Cited by 2
Abstract
The chemical vapor deposition (CVD) method has been used to produce dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and nanotubular modified titanium alloys (Ti6Al4V/TNT5), leading to the formation of Ti6Al4V/AgNPs and Ti6Al4V/TNT5/AgNPs systems with different contents of metallic silver [...] Read more.
The chemical vapor deposition (CVD) method has been used to produce dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and nanotubular modified titanium alloys (Ti6Al4V/TNT5), leading to the formation of Ti6Al4V/AgNPs and Ti6Al4V/TNT5/AgNPs systems with different contents of metallic silver particles. Their surface morphology and silver particles arrangement were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and atomic force microscopy (AFM). The wettability and surface free energy of these materials were investigated on the basis of contact angle measurements. The degree of silver ion release from the surface of the studied systems immersed in phosphate buffered saline solution (PBS) was estimated using inductively coupled plasma ionization mass spectrometry (ICP-MS). The biocompatibility of the analyzed materials was estimated based on the fibroblasts and osteoblasts adhesion and proliferation, while their microbiocidal properties were determined against Gram-positive and Gram-negative bacteria, and yeasts. The results of our works proved the high antimicrobial activity and biocompatibility of all the studied systems. Among them, Ti6Al4V/TNT5/0.6AgNPs contained the lowest amount of AgNPs, but still revealed optimal biointegration properties and high biocidal properties. This is the biomaterial that possesses the desired biological properties, in which the potential toxicity is minimized by minimizing the number of silver nanoparticles. Full article
(This article belongs to the Special Issue Biomaterial-Related Infections)
Show Figures

Graphical abstract

Open AccessArticle
The Morphology, Structure, Mechanical Properties and Biocompatibility of Nanotubular Titania Coatings before and after Autoclaving Process
J. Clin. Med. 2019, 8(2), 272; https://doi.org/10.3390/jcm8020272 - 23 Feb 2019
Cited by 4
Abstract
The autoclaving process is one of the sterilization procedures of implantable devices. Therefore, it is important to assess the impact of hot steam at high pressure on the morphology, structure, and properties of implants modified by nanocomposite coatings. In our works, we focused [...] Read more.
The autoclaving process is one of the sterilization procedures of implantable devices. Therefore, it is important to assess the impact of hot steam at high pressure on the morphology, structure, and properties of implants modified by nanocomposite coatings. In our works, we focused on studies on amorphous titania nanotubes produced by titanium alloy (Ti6Al4V) electrochemical oxidation in the potential range 5–60 V. Half of the samples were drying in argon stream at room temperature, and the second ones were drying additionally with the use of immersion in acetone and drying at 396 K. Samples were subjected to autoclaving and after sterilization they were structurally and morphologically characterized using Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and scanning electron microscopy (SEM). They were characterized in terms of wettability, mechanical properties, and biocompatibility. Obtained results proved that the autoclaving of amorphous titania nanotube coatings produced at lower potentials (5–15 V) does not affect their morphology and structure regardless of the drying method before autoclaving. Nanotubular coatings produced using higher potentials (20–60 V) require removal of adsorbed water particles from their surface. Otherwise, autoclaving leads to the destruction of the architecture of nanotubular coatings, which is associated with the changing of their mechanical and biointegration properties. Full article
(This article belongs to the Special Issue Biomaterial-Related Infections)
Show Figures

Graphical abstract

Open AccessArticle
Inflammatory Cell Recruitment in Candida glabrata Biofilm Cell-Infected Mice Receiving Antifungal Chemotherapy
J. Clin. Med. 2019, 8(2), 142; https://doi.org/10.3390/jcm8020142 - 26 Jan 2019
Abstract
(1) Background: Due to a high rate of antifungal resistance, Candida glabrata is one of the most prevalent Candida spp. linked to systemic candidiasis, which is particularly critical in catheterized patients. The goal of this work was to simulate a systemic infection exclusively [...] Read more.
(1) Background: Due to a high rate of antifungal resistance, Candida glabrata is one of the most prevalent Candida spp. linked to systemic candidiasis, which is particularly critical in catheterized patients. The goal of this work was to simulate a systemic infection exclusively derived from C. glabrata biofilm cells and to evaluate the effectiveness of the treatment of two echinocandins—caspofungin (Csf) and micafungin (Mcf). (2) Methods: CD1 mice were infected with 48 h-biofilm cells of C. glabrata and then treated with Csf or Mcf. After 72 h, the efficacy of each drug was evaluated to assess the organ fungal burden through colony forming units (CFU) counting. The immune cell recruitment into target organs was evaluated by flow cytometry or histopathology analysis. (3) Results: Fungal burden was found to be higher in the liver than in the kidneys. However, none of the drugs was effective in completely eradicating C. glabrata biofilm cells. At the evaluated time point, flow cytometry analysis showed a predominant mononuclear response in the spleen, which was also evident in the liver and kidneys of the infected mice, as observed by histopathology analysis. (4) Conclusions: Echinocandins do not have a significant impact on liver and kidney fungal burden, or recruited inflammatory infiltrate, when mice are intravenously (i.v.) infected with C. glabrata biofilm-grown cells. Full article
(This article belongs to the Special Issue Biomaterial-Related Infections)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Candida sp. Infections in Patients with Diabetes Mellitus
J. Clin. Med. 2019, 8(1), 76; https://doi.org/10.3390/jcm8010076 - 10 Jan 2019
Cited by 4
Abstract
Candidiasis has increased substantially worldwide over recent decades and is a significant cause of morbidity and mortality, especially among critically ill patients. Diabetes mellitus (DM) is a metabolic disorder that predisposes individuals to fungal infections, including those related to Candida sp., due to [...] Read more.
Candidiasis has increased substantially worldwide over recent decades and is a significant cause of morbidity and mortality, especially among critically ill patients. Diabetes mellitus (DM) is a metabolic disorder that predisposes individuals to fungal infections, including those related to Candida sp., due to a immunosuppressive effect on the patient. This review aims to discuss the latest studies regarding the occurrence of candidiasis on DM patients and the pathophysiology and etiology associated with these co-morbidities. A comprehensive review of the literature was undertaken. PubMed, Scopus, Elsevier’s ScienceDirect, and Springer’s SpringerLink databases were searched using well-defined search terms. Predefined inclusion and exclusion criteria were applied to classify relevant manuscripts. Results of the review show that DM patients have an increased susceptibility to Candida sp. infections which aggravates in the cases of uncontrolled hyperglycemia. The conclusion is that, for these patients, the hospitalization periods have increased and are commonly associated with the prolonged use of indwelling medical devices, which also increase the costs associated with disease management. Full article
(This article belongs to the Special Issue Biomaterial-Related Infections)
Show Figures

Graphical abstract

Back to TopTop