Special Issue "Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders"

A special issue of Journal of Clinical Medicine (ISSN 2077-0383). This special issue belongs to the section "Clinical Psychology".

Deadline for manuscript submissions: closed (31 March 2020).

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors

Prof. Dr. Giuseppe Riva
E-Mail Website
Guest Editor
Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
Interests: virtual reality; multisensory integration; bodily self-consciousness; interoceptive illusions; augmented reality; body memory; robotics
Special Issues and Collections in MDPI journals
Dr. Silvia Serino
E-Mail Website
Guest Editor
MySpace Lab, Department of Clinical Neurosciences, University Hospital Lausanne (CHUV)
Interests: Virtual Reality, Embodied Cognition, Mental Health, Bodily Self-Consciousness, Spatial Cognition, Body Representation, Self-awareness

Special Issue Information

Dear Colleagues,

In the computer sciences, virtual reality (VR) is usually described as a set of fancy technologies. However, in medicine and neuroscience, VR is instead defined as an advanced form of human–computer interface that allows the user to interact with and become present in a computer-generated environment. The sense of presence offered by VR is be a powerful tool for personal change because it offers a world where the individual can stay and live a specific experience. For this reason, the use of VR in mental health shows promise: different researches support its clinical efficacy for conditions including anxiety disorders, stress-related disorders, obesity and eating disorders, pain management, addiction and schizophrenia. However, more research is needed to transform VR according to a clinical standard for mental health. This Special Issue aims to present the most recent advances in the mental health applications of VR, as well as their implications for future patient care.

Prof. Dr. Giuseppe Riva
Dr. Silvia Serino
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Clinical Medicine is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Virtual Reality
  • Mental Health
  • Anxiety Disorders
  • Eating Disorders
  • Pain Management
  • Addiction
  • Schizophrenia

Published Papers (19 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial
Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders
J. Clin. Med. 2020, 9(11), 3434; https://doi.org/10.3390/jcm9113434 - 26 Oct 2020
Cited by 2 | Viewed by 820
Abstract
Computer scientists usually describe virtual reality (VR) as a set of fancy hardware and software technologies. However, psychology and neuroscience are starting to consider VR as the most advanced form of human-computer interaction allowing individuals to act, communicate and become present in a [...] Read more.
Computer scientists usually describe virtual reality (VR) as a set of fancy hardware and software technologies. However, psychology and neuroscience are starting to consider VR as the most advanced form of human-computer interaction allowing individuals to act, communicate and become present in a computer-generated environment. In this view, the feeling of “being there” experienced during a VR experience can become a powerful tool for personal change: it offers a dynamic and social world where individuals can live and share a specific experience. For this reason, the use of VR in mental health shows promise: different researches support its clinical efficacy for conditions including anxiety disorders, stress-related disorders, obesity and eating disorders, pain management, addiction and schizophrenia. However, more research is needed to transform the promises of VR in a real clinical tool for mental health. This Special Issue aims to present the most recent advances in the mental health applications of VR, as well as their implications for future patient care. Full article

Research

Jump to: Editorial, Review, Other

Open AccessArticle
Assessing the Relationship between Sense of Agency, the Bodily-Self and Stress: Four Virtual-Reality Experiments in Healthy Individuals
J. Clin. Med. 2020, 9(9), 2931; https://doi.org/10.3390/jcm9092931 - 11 Sep 2020
Cited by 1 | Viewed by 923
Abstract
The bodily-self, our experience of being a body, arises from the interaction of several processes. For example, embodied Sense of Agency (SoA), the feeling of controlling our body’s actions, is a fundamental facet of the bodily-self. SoA is disturbed in psychosis, with stress [...] Read more.
The bodily-self, our experience of being a body, arises from the interaction of several processes. For example, embodied Sense of Agency (SoA), the feeling of controlling our body’s actions, is a fundamental facet of the bodily-self. SoA is disturbed in psychosis, with stress promoting its inception. However, there is little knowledge regarding the relationship between SoA, stress, and other facets of the bodily-self. In four experiments manipulating embodied SoA using a virtual hand (VH), we examined (1) How is embodied SoA related to other facets of the bodily-self?; and (2) How is SoA impacted by stress? We found that increased alteration of the VH significantly decreased subjective ratings of SoA and body ownership (Exp. 1), supporting the close relation between SoA and body ownership. Interoceptive accuracy and SoA were positively correlated (Exp. 3), connecting awareness to one’s actions and cardiac signals. Contrary to our expectations, SoA was not related to trait anxiety (Exp. 3), nor did induced stress impair SoA (Exp. 4). Finally, we found a negative correlation between self-reported prodromal symptoms and SoA. These results strongly support the connection between SoA and the bodily-self. Whereas, SoA was not impaired by stress, and weakly related to psychotic symptoms. Full article
Show Figures

Figure 1

Open AccessArticle
UnReal? Investigating the Sense of Reality and Psychotic Symptoms with Virtual Reality
J. Clin. Med. 2020, 9(6), 1627; https://doi.org/10.3390/jcm9061627 - 28 May 2020
Cited by 3 | Viewed by 1497
Abstract
Distortions of reality, such as hallucinations, are common symptoms of many psychiatric conditions. Accordingly, sense of reality (SoR), the ability to discriminate between true and false perceptions, is a central criterion in the assessment of neurological and psychiatric health. Despite the critical role [...] Read more.
Distortions of reality, such as hallucinations, are common symptoms of many psychiatric conditions. Accordingly, sense of reality (SoR), the ability to discriminate between true and false perceptions, is a central criterion in the assessment of neurological and psychiatric health. Despite the critical role of the SoR in daily life, little is known about how this is formed in the mind. Here, we propose a novel theoretical and methodological framework to study the SoR and its relation to psychotic symptoms. In two experiments, we employed a specialized immersive virtual reality (VR) environment allowing for well-controlled manipulations of visual reality. We first tested the impact of manipulating visual reality on objective perceptual thresholds (just noticeable differences). In a second experiment, we tested how these manipulations affected subjective judgments of reality. The results revealed that the objective perceptual thresholds were robust and replicable, demonstrating that SoR is a stable psychometric property that can be measured experimentally. Furthermore, reality alterations reduced subjective reality judgments across all manipulated visual aspects. Finally, reduced sensitivity to changes in visual reality was related to self-reported prodromal psychotic symptoms. These results provide evidence for the relevance of SoR in the assessment of psychosis and other mental disorders in which reality is distorted. Full article
Show Figures

Figure 1

Open AccessArticle
The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG)
J. Clin. Med. 2020, 9(5), 1355; https://doi.org/10.3390/jcm9051355 - 06 May 2020
Cited by 4 | Viewed by 908
Abstract
Due to the lack of pharmacological treatment for dementia, timely detection of subjects at risk can be of seminal importance for preemptive rehabilitation interventions. The aim of the study was to determine the usability of the smart aging serious game (SASG), a virtual [...] Read more.
Due to the lack of pharmacological treatment for dementia, timely detection of subjects at risk can be of seminal importance for preemptive rehabilitation interventions. The aim of the study was to determine the usability of the smart aging serious game (SASG), a virtual reality platform, in assessing the cognitive profile of an amnestic mild cognitive impairment (aMCI) population, its validity in discriminating aMCI from healthy controls (HC), and in detecting hippocampal degeneration, a biomarker of clinical progression towards dementia. Thirty-six aMCI and 107 HC subjects were recruited and administered the SASG together with a neuropsychological evaluation. All aMCI and 30 HC subjects performed also an MRI for hippocampal volume measurement. Results showed good usability of the SASG despite the low familiarity with technology in both groups. ROC curve analyses showed similar discriminating abilities for SASG and gold standard tests, and a greater discrimination ability compared to non-specific neuropsychological tests. Finally, linear regression analysis revealed that the SASG outperformed the Montreal cognitive assessment test (MoCA) in the ability to detect neuronal degeneration in the hippocampus on the right side. These data show that SASG is an ecological task, that can be considered a digital biomarker providing objective and clinically meaningful data about the cognitive profile of aMCI subjects. Full article
Show Figures

Figure 1

Open AccessArticle
The Effect of a Virtual Reality-Based Intervention Program on Cognition in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial
J. Clin. Med. 2020, 9(5), 1283; https://doi.org/10.3390/jcm9051283 - 29 Apr 2020
Cited by 11 | Viewed by 1833
Abstract
This study aimed to investigate the association between a virtual reality (VR) intervention program and cognitive, brain and physical functions in high-risk older adults. In a randomized controlled trial, we enrolled 68 individuals with mild cognitive impairment (MCI). The MCI diagnosis was based [...] Read more.
This study aimed to investigate the association between a virtual reality (VR) intervention program and cognitive, brain and physical functions in high-risk older adults. In a randomized controlled trial, we enrolled 68 individuals with mild cognitive impairment (MCI). The MCI diagnosis was based on medical evaluations through a clinical interview conducted by a dementia specialist. Cognitive assessments were performed by neuropsychologists according to standardized methods, including the Mini-Mental State Examination (MMSE) and frontal cognitive function: trail making test (TMT) A & B, and symbol digit substitute test (SDST). Resting state electroencephalogram (EEG) was measured in eyes open and eyes closed conditions for 5 minutes each, with a 19-channel wireless EEG device. The VR intervention program (3 times/week, 100 min each session) comprised four types of VR game-based content to improve the attention, memory and processing speed. Analysis of the subjects for group–time interactions revealed that the intervention group exhibited a significantly improved executive function and brain function at the resting state. Additionally, gait speed and mobility were also significantly improved between and after the follow-up. The VR-based training program improved cognitive and physical function in patients with MCI relative to controls. Encouraging patients to perform VR and game-based training may be beneficial to prevent cognitive decline. Full article
Show Figures

Figure 1

Open AccessArticle
Machine Learning and Virtual Reality on Body Movements’ Behaviors to Classify Children with Autism Spectrum Disorder
J. Clin. Med. 2020, 9(5), 1260; https://doi.org/10.3390/jcm9051260 - 26 Apr 2020
Cited by 2 | Viewed by 1653
Abstract
Autism spectrum disorder (ASD) is mostly diagnosed according to behavioral symptoms in sensory, social, and motor domains. Improper motor functioning, during diagnosis, involves the qualitative evaluation of stereotyped and repetitive behaviors, while quantitative methods that classify body movements’ frequencies of children with ASD [...] Read more.
Autism spectrum disorder (ASD) is mostly diagnosed according to behavioral symptoms in sensory, social, and motor domains. Improper motor functioning, during diagnosis, involves the qualitative evaluation of stereotyped and repetitive behaviors, while quantitative methods that classify body movements’ frequencies of children with ASD are less addressed. Recent advances in neuroscience, technology, and data analysis techniques are improving the quantitative and ecological validity methods to measure specific functioning in ASD children. On one side, cutting-edge technologies, such as cameras, sensors, and virtual reality can accurately detect and classify behavioral biomarkers, as body movements in real-life simulations. On the other, machine-learning techniques are showing the potential for identifying and classifying patients’ subgroups. Starting from these premises, three real-simulated imitation tasks have been implemented in a virtual reality system whose aim is to investigate if machine-learning methods on movement features and frequency could be useful in discriminating ASD children from children with typical neurodevelopment. In this experiment, 24 children with ASD and 25 children with typical neurodevelopment participated in a multimodal virtual reality experience, and changes in their body movements were tracked by a depth sensor camera during the presentation of visual, auditive, and olfactive stimuli. The main results showed that ASD children presented larger body movements than TD children, and that head, trunk, and feet represent the maximum classification with an accuracy of 82.98%. Regarding stimuli, visual condition showed the highest accuracy (89.36%), followed by the visual-auditive stimuli (74.47%), and visual-auditive-olfactory stimuli (70.21%). Finally, the head showed the most consistent performance along with the stimuli, from 80.85% in visual to 89.36% in visual-auditive-olfactory condition. The findings showed the feasibility of applying machine learning and virtual reality to identify body movements’ biomarkers that could contribute to improving ASD diagnosis. Full article
Show Figures

Figure 1

Open AccessArticle
Manipulating the Perceived Shape and Color of a Virtual Limb Can Modulate Pain Responses
J. Clin. Med. 2020, 9(2), 291; https://doi.org/10.3390/jcm9020291 - 21 Jan 2020
Cited by 6 | Viewed by 1008
Abstract
Changes in body representation may affect pain perception. The effect of a distorted body image, such as the telescoping effect in amputee patients, on pain perception, is unclear. This study aimed to investigate whether distorting an embodied virtual arm in virtual reality (simulating [...] Read more.
Changes in body representation may affect pain perception. The effect of a distorted body image, such as the telescoping effect in amputee patients, on pain perception, is unclear. This study aimed to investigate whether distorting an embodied virtual arm in virtual reality (simulating the telescoping effect in amputees) modulated pain perception and anticipatory responses to pain in healthy participants. Twenty-seven right-handed participants were immersed in virtual reality and the virtual arm was shown with three different levels of distortion with a virtual threatening stimulus either approaching or contacting the virtual hand. We evaluated pain/discomfort ratings, ownership, and skin conductance responses (SCRs) after each condition. Viewing a distorted virtual arm enhances the SCR to a threatening event with respect to viewing a normal control arm, but when viewing a reddened-distorted virtual arm, SCR was comparatively reduced in response to the threat. There was a positive relationship between the level of ownership over the distorted and reddened-distorted virtual arms with the level of pain/discomfort, but not in the normal control arm. Contact with the threatening stimulus significantly enhances SCR and pain/discomfort, while reduced SCR and pain/discomfort were seen in the simulated-contact condition. These results provide further evidence of a bi-directional link between body image and pain perception. Full article
Show Figures

Figure 1

Open AccessArticle
Characterizing Body Image Distortion and Bodily Self-Plasticity in Anorexia Nervosa via Visuo-Tactile Stimulation in Virtual Reality
J. Clin. Med. 2020, 9(1), 98; https://doi.org/10.3390/jcm9010098 - 30 Dec 2019
Cited by 8 | Viewed by 2025
Abstract
We combined virtual reality and multisensory bodily illusion with the aim to characterize and reduce the perceptual (body overestimation) and the cognitive-emotional (body dissatisfaction) components of body image distortion (BID) in anorexia nervosa (AN). For each participant (20 anorexics, 20 healthy controls) we [...] Read more.
We combined virtual reality and multisensory bodily illusion with the aim to characterize and reduce the perceptual (body overestimation) and the cognitive-emotional (body dissatisfaction) components of body image distortion (BID) in anorexia nervosa (AN). For each participant (20 anorexics, 20 healthy controls) we built personalized avatars that reproduced their own body size, shape, and verisimilar increases and losses of their original weight. Body overestimation and dissatisfaction were measured by asking participants to choose the avatar that best resembled their real and ideal body. Results show higher body dissatisfaction in AN, caused by the desire of a thinner body, and no body-size overestimation. Interpersonal multisensory stimulation (IMS) was then applied on the avatar reproducing participant’s perceived body, and on the two avatars which reproduced increases and losses of 15% of it, all presented with a first-person perspective (1PP). Embodiment was stronger after synchronous IMS in both groups, but did not reduce BID in participants with AN. Interestingly, anorexics reported more negative emotions after embodying the fattest avatar, which scaled with symptoms severity. Overall, our findings suggest that the cognitive-emotional, more than the perceptual component of BID is severely altered in AN and that perspective (1PP vs. 3PP) from which a body is evaluated may play a crucial role. Future research and clinical trials might take advantage of virtual reality to reduce the emotional distress related to body dissatisfaction. Full article
Show Figures

Figure 1

Open AccessArticle
The Equivalence between Virtual and Real Feared Stimuli in a Phobic Adult Sample: A Neuroimaging Study
J. Clin. Med. 2019, 8(12), 2139; https://doi.org/10.3390/jcm8122139 - 04 Dec 2019
Cited by 2 | Viewed by 820
Abstract
The clinical use of virtual reality (VR) has proven its efficacy, especially when used as an exposure technique. A prominent property of VR’s utility is its equivalence with the reality it represents. In this study, we explored this equivalence in a clinical context [...] Read more.
The clinical use of virtual reality (VR) has proven its efficacy, especially when used as an exposure technique. A prominent property of VR’s utility is its equivalence with the reality it represents. In this study, we explored this equivalence in a clinical context using neuroimaging. A sample of 32 adults with specific phobias (i.e., to cockroaches, spiders, or lizards) was divided into two groups: One was exposed to phobic stimuli using VR and the other was exposed to real phobic images (RI). We used brain activations as a dependent measure, focusing specifically on brain areas usually associated with fear processing. Whole-brain analysis detected higher activations for RI in the hippocampus, occipital, and calcarine areas. A specific analysis of the amygdala and insula also detected higher activations and extensions in response to RI, but VR stimuli also activated those areas in a significant manner. These results suggest that even in those cases where RI stimuli activate all of the brain’s fear-processing circuits, VR stimuli do so as well. This implies that VR can be useful as an exposure technique similar to RI and applied as more than a mere training mechanism. Full article
Show Figures

Figure 1

Open AccessArticle
A Computational Approach for the Assessment of Executive Functions in Patients with Obsessive–Compulsive Disorder
J. Clin. Med. 2019, 8(11), 1975; https://doi.org/10.3390/jcm8111975 - 14 Nov 2019
Cited by 5 | Viewed by 1013
Abstract
Previous studies on obsessive–compulsive disorder (OCD) showed impairments in executive domains, particularly in cognitive inhibition. In this perspective, the use of virtual reality showed huge potential in the assessment of executive functions; however, unfortunately, to date, no study on the assessment of these [...] Read more.
Previous studies on obsessive–compulsive disorder (OCD) showed impairments in executive domains, particularly in cognitive inhibition. In this perspective, the use of virtual reality showed huge potential in the assessment of executive functions; however, unfortunately, to date, no study on the assessment of these patients took advantage of the use of virtual environments. One of the main problems faced within assessment protocols is the use of a limited number of variables and tools when tailoring a personalized program. The main aim of this study was to provide a heuristic decision tree for the future development of tailored assessment protocols. To this purpose, we conducted a study that involved 58 participants (29 OCD patients and 29 controls) to collect both classic neuropsychological data and precise data based on a validated protocol in virtual reality for the assessment of executive functions, namely, the VMET (virtual multiple errands test). In order to provide clear indications for working on executive functions with these patients, we carried out a cross-validation based on three learning algorithms and computationally defined two decision trees. We found that, by using three neuropsychological tests and two VMET scores, it was possible to discriminate OCD patients from controls, opening a novel scenario for future assessment protocols based on virtual reality and computational techniques. Full article
Show Figures

Figure 1

Open AccessArticle
The Effect of a Virtual-Reality Full-Body Illusion on Body Representation in Obesity
J. Clin. Med. 2019, 8(9), 1330; https://doi.org/10.3390/jcm8091330 - 28 Aug 2019
Cited by 3 | Viewed by 1530
Abstract
Background. The effective illusory ownership over an artificial body in modulating body representations in healthy and eating disorders population has been repeatedly reported in recent literature. In this study, we extended this research in the field of obesity: specifically, we investigated whether [...] Read more.
Background. The effective illusory ownership over an artificial body in modulating body representations in healthy and eating disorders population has been repeatedly reported in recent literature. In this study, we extended this research in the field of obesity: specifically, we investigated whether ownership over a virtual body with a skinny abdomen might be successfully experienced by participants affected by obesity. Methods. Fifteen participants with obesity and fifteen healthy-weight participants took part at this study in which the VR-Full-Body Illusion was adopted. The strength of illusion was investigated through the traditional Embodiment Questionnaire, while changes in bodily experience were measured through a body size estimation task. Results. Participants with obesity as well as healthy-weight participants reported to experience the illusion. About the body size estimation task, both groups reported changes only in the estimation of the abdomen’s circumference after the experimental condition, in absence of any another difference. Discussion. Participants with obesity reported to experience the illusion over a skinny avatar, but the modulation of the bodily experience seems controversial. Future lines of research exploiting this technique for modulating body representations in obesity, specifically in terms of potential therapeutic use, were discussed. Full article
Show Figures

Figure 1

Open AccessArticle
Is This My Own Body? Changing the Perceptual and Affective Body Image Experience among College Students Using a New Virtual Reality Embodiment-Based Technique
J. Clin. Med. 2019, 8(7), 925; https://doi.org/10.3390/jcm8070925 - 27 Jun 2019
Cited by 7 | Viewed by 1404
Abstract
Body image disturbances (BIDs) have been widely studied using virtual reality (VR) devices that induce a full body illusion (FBI) and allow manipulation of the individual’s perceptual and affective experiences of the body. This study aimed to assess whether the induction of the [...] Read more.
Body image disturbances (BIDs) have been widely studied using virtual reality (VR) devices that induce a full body illusion (FBI) and allow manipulation of the individual’s perceptual and affective experiences of the body. This study aimed to assess whether the induction of the FBI over a virtual body would produce changes in body-related anxiety and BIDs using a new whole-body visuo-tactile stimulation procedure. Fifty non-clinical participants were randomly assigned to synchronous or asynchronous visuo-tactile groups. During the pre-assessment, all participants filled in BIDs and body-anxiety questionnaires. Then, they were embodied into two virtual bodies (VBs): firstly, with their real measurements, and secondly, with a larger-size body. Body image disturbances, body anxiety, fear of gaining weight, and FBI levels were assessed after exposure to each avatar. All participants in both conditions showed higher levels of BIDs and body anxiety after owning the larger-size VB than after owning the real-size VB (p < 0.05). The synchronous visuo-tactile group had higher scores, although the differences did not reach statistical significance. This study provides evidence of the usefulness of this new embodiment-based technique to induce changes in BIDs or body anxiety in a non-clinical sample, being suitable for use in future body image interventions. Full article
Show Figures

Graphical abstract

Open AccessArticle
Exposure to a Standardized Catastrophic Scenario in Virtual Reality or a Personalized Scenario in Imagination for Generalized Anxiety Disorder
J. Clin. Med. 2019, 8(3), 309; https://doi.org/10.3390/jcm8030309 - 05 Mar 2019
Cited by 9 | Viewed by 1207
Abstract
The cognitive behavioral treatment of generalized anxiety disorder (GAD) often involves exposing patients to a catastrophic scenario depicting their most feared worry. The aim of this study was to examine whether a standardized scenario recreated in virtual reality (VR) would elicit anxiety and [...] Read more.
The cognitive behavioral treatment of generalized anxiety disorder (GAD) often involves exposing patients to a catastrophic scenario depicting their most feared worry. The aim of this study was to examine whether a standardized scenario recreated in virtual reality (VR) would elicit anxiety and negative affect and how it compared to the traditional method of imagining a personalized catastrophic scenario. A sample of 28 participants were first exposed to a neutral non-catastrophic scenario and then to a personalized scenario in imagination or a standardized virtual scenario presented in a counterbalanced order. The participants completed questionnaires before and after each immersion. The results suggest that the standardized virtual scenario induced significant anxiety. No difference was found when comparing exposure to the standardized scenario in VR and exposure to the personalized scenario in imagination. These findings were specific to anxiety and not to the broader measure of negative affect. Individual differences in susceptibility to feel present in VR was a significant predictor of increase in anxiety and negative affect. Future research could use these scenarios to conduct a randomized control trial to test the efficacy and cost/benefits of using VR in the treatment of GAD. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research, Other

Open AccessReview
Use of Virtual Reality for the Management of Anxiety and Pain in Dental Treatments: Systematic Review and Meta-Analysis
J. Clin. Med. 2020, 9(4), 1025; https://doi.org/10.3390/jcm9041025 - 05 Apr 2020
Cited by 2 | Viewed by 1686 | Retraction
Abstract
Background: Dental treatments often cause pain and anxiety in patients. Virtual reality (VR) is a novel procedure that can provide distraction during dental procedures or prepare patients to receive such type of treatments. This meta-analysis is the first to gather evidence on the [...] Read more.
Background: Dental treatments often cause pain and anxiety in patients. Virtual reality (VR) is a novel procedure that can provide distraction during dental procedures or prepare patients to receive such type of treatments. This meta-analysis is the first to gather evidence on the effectiveness of VR on the reduction of pain (P) and dental anxiety (DA) in patients undergoing dental treatment, regardless of age. Methods: MEDLINE, CENTRAL, PubMed, EMBASE, Wiley Library and Web of Science were searched for scientific articles in November 2019. The keywords used were: “virtual reality”, “distraction systems”, “dental anxiety” and “pain”. Studies where VR was used for children and adults as a measure against anxiety and pain during dental treatments were included. VR was defined as a three-dimensional environment that provides patients with a sense of immersion, transporting them to appealing and interactive settings. Anxiety and pain results were assessed during dental treatments where VR was used, and in standard care situations. Results: 31 studies were identified, of which 14 met the inclusion criteria. Pain levels were evaluated in four studies (n = 4), anxiety levels in three (n = 3) and anxiety and pain together in seven (n = 7). Our meta-analysis was based on ten studies (n = 10). The effect of VR was studied mainly in the pediatric population (for pain SMD = −0.82). In the adult population, only two studies (not significant) were considered. Conclusions: The findings of the meta-analysis show that VR is an effective distraction method to reduce pain and anxiety in patients undergoing a variety of dental treatments; however, further research on VR as a tool to prepare patients for dental treatment is required because of the scarcity of studies in this area. Full article
Show Figures

Figure 1

Open AccessReview
The Benefits of emotion Regulation Interventions in Virtual Reality for the Improvement of Wellbeing in Adults and Older Adults: A Systematic Review
J. Clin. Med. 2020, 9(2), 500; https://doi.org/10.3390/jcm9020500 - 12 Feb 2020
Cited by 9 | Viewed by 1768
Abstract
The impact of emotion regulation interventions on wellbeing has been extensively documented in literature, although only in recent years virtual reality (VR) technologies have been incorporated in the design of such interventions, in both clinical and non-clinical settings. A systematic search, following the [...] Read more.
The impact of emotion regulation interventions on wellbeing has been extensively documented in literature, although only in recent years virtual reality (VR) technologies have been incorporated in the design of such interventions, in both clinical and non-clinical settings. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, was therefore carried out to explore the state of the art in emotion regulation interventions for wellbeing using virtual reality. The literature on this topic was queried, 414 papers were screened, and 11 studies were included, covering adults and older adults. Our findings offer an overview of the current use of VR technologies for the enhancement of emotion regulation (ER) and wellbeing. The results are promising and suggest that VR-based emotion regulation training can facilitate the promotion of wellbeing. An overview of VR-based training interventions is crucial for better understanding how to use these tools in the clinical settings. This review offers a critical debate on the structure of such intervention protocols. It also analyzes and highlights the crucial role played by the selection of the objective and subjective wellbeing assessment measures of said intervention protocols. Full article
Show Figures

Figure 1

Open AccessReview
Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness
J. Clin. Med. 2019, 8(11), 1882; https://doi.org/10.3390/jcm8111882 - 05 Nov 2019
Cited by 11 | Viewed by 2008
Abstract
Objective: the objective of this review is to analyze the advances in the field of rehabilitation through virtual reality, while taking into account non-immersive systems, as evidence have them shown to be highly accepted by older people, due to the lowest “cibersikness” symptomatology. [...] Read more.
Objective: the objective of this review is to analyze the advances in the field of rehabilitation through virtual reality, while taking into account non-immersive systems, as evidence have them shown to be highly accepted by older people, due to the lowest “cibersikness” symptomatology. Data sources: a systematic review of the literature was conducted in June 2019. The data were collected from Cochrane, Embase, Scopus, and PubMed databases, analyzing manuscripts and articles of the last 10 years. Study selection: we only included randomized controlled trials written in English aimed to study the use of the virtual reality in rehabilitation. We selected 10 studies, which were characterized by clinical heterogeneity. Data extraction: quality evaluation was performed based on the Physioterapy Evidence Database (PEDro) scale, suggested for evidence based review of stroke rehabilitation. Of 10 studies considered, eight were randomized controlled trials and the PEDro score ranged from four to a maximum of nine. Data synthesis: VR (Virtual Reality) creates artificial environments with the possibility of a patient interaction. This kind of experience leads to the development of cognitive and motor abilities, which usually positively affect the emotional state of the patient, increasing collaboration and compliance. Some recent studies have suggested that rehabilitation treatment interventions might be useful and effective in treating motor and cognitive symptoms in different neurological disorders, including traumatic brain injury, multiple sclerosis, and progressive supranuclear palsy. Conclusions: as it is shown by the numerous studies in the field, the application of VR has a positive impact on the rehabilitation of the most predominant geriatric syndromes. The level of realism of the virtual stimuli seems to have a crucial role in the training of cognitive abilities. Future research needs to improve study design by including larger samples, longitudinal designs, long term follow-ups, and different outcome measures, including functional and quality of life indexes, to better evaluate the clinical impact of this promising technology in healthy old subjects and in neurological patients. Full article
Show Figures

Figure 1

Open AccessReview
Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review
J. Clin. Med. 2019, 8(10), 1516; https://doi.org/10.3390/jcm8101516 - 20 Sep 2019
Cited by 12 | Viewed by 1507
Abstract
In recent years, virtual reality (VR) technologies have become widely used in clinical settings because they offer impressive opportunities for neurorehabilitation of different cognitive deficits. Specifically, virtual environments (VEs) have ideal characteristics for navigational training aimed at rehabilitating spatial memory. A systematic search, [...] Read more.
In recent years, virtual reality (VR) technologies have become widely used in clinical settings because they offer impressive opportunities for neurorehabilitation of different cognitive deficits. Specifically, virtual environments (VEs) have ideal characteristics for navigational training aimed at rehabilitating spatial memory. A systematic search, following PRISMA guidelines, was carried out to explore the current scenario in neurorehabilitation of spatial memory using virtual reality. The literature on this topic was queried, 5048 papers were screened, and 16 studies were included, covering patients presenting different neuropsychological diseases. Our findings highlight the potential of the navigational task in virtual environments (VEs) for enhancing navigation and orientation abilities in patients with spatial memory disorders. The results are promising and suggest that VR training can facilitate neurorehabilitation, promoting brain plasticity processes. An overview of how VR-based training has been implemented is crucial for using these tools in clinical settings. Hence, in the current manuscript, we have critically debated the structure and the length of training protocols, as well as a different type of exploration through VR devices with different degrees of immersion. Furthermore, we analyzed and highlighted the crucial role played by the selection of the assessment tools. Full article
Show Figures

Figure 1

Open AccessReview
Virtual Enactment Effect on Memory in Young and Aged Populations: A Systematic Review
J. Clin. Med. 2019, 8(5), 620; https://doi.org/10.3390/jcm8050620 - 07 May 2019
Cited by 10 | Viewed by 1595
Abstract
Background: Spatial cognition is a critical aspect of episodic memory, as it provides the scaffold for events and enables successful retrieval. Virtual enactment (sensorimotor and cognitive interaction) by means of input devices within virtual environments provides an excellent opportunity to enhance encoding and [...] Read more.
Background: Spatial cognition is a critical aspect of episodic memory, as it provides the scaffold for events and enables successful retrieval. Virtual enactment (sensorimotor and cognitive interaction) by means of input devices within virtual environments provides an excellent opportunity to enhance encoding and to support memory retrieval with useful traces in the brain compared to passive observation. Methods: We conducted a systematic review with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines concerning the virtual enactment effect on spatial and episodic memory in young and aged populations. We aim at giving guidelines for virtual enactment studies, especially in the context of aging, where spatial and episodic memory decline. Results: Our findings reveal a positive effect on spatial and episodic memory in the young population and promising outcomes in aging. Several cognitive factors (e.g., executive function, decision-making, and visual components) mediate memory performances. Findings should be taken into account for future interventions in aging. Conclusions: The present review sheds light on the key role of the sensorimotor and cognitive systems for memory rehabilitation by means of a more ecological tool such as virtual reality and stresses the importance of the body for cognition, endorsing the view of an embodied mind. Full article
Show Figures

Figure 1

Other

Open AccessRetraction
Retraction: López-Valverde, N.; et al. Use of Virtual Reality for the Management of Anxiety and Pain in Dental Treatments: Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 1025
J. Clin. Med. 2020, 9(8), 2404; https://doi.org/10.3390/jcm9082404 - 28 Jul 2020
Viewed by 726
Abstract
The authors of a recent published paper [...] Full article
Back to TopTop