Feature Papers in Organometallic Chemistry 2024

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Organometallic Chemistry".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 2846

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Köln, Germany
Interests: transition metal complexes (including organometallic); platinum, palladium, nickel; synthesis; electrochemistry; photophysics; spectroscopy; modelling of catalytic processes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, China
Interests: organometal halide perovskite; photovoltaics; radiation detection
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Our Special Issue "10th Anniversary of Inorganics: Organometallic Chemistry" in 2023 has been a great success (you can reference this SI here). As we feel that there is far more potential in this topic, and we have received some further agreements for manuscript submissions, we want to launch the Special Issue "Feature Papers in Organometallic Chemistry 2024" as a follow-up SI project. We invite all colleagues working in the field of organometallic chemistry to submit a contribution within this SI to shed light on this important aspect of chemistry.

Communications, full research papers, and reviews describing the synthesis of organometallic compounds, their use or relevance in catalysis, and their application in important fields such as luminescent materials, photochemical energy conversion, and bio-medical applications in diagnosis and treatment, just to name a few, are welcome.

Prof. Dr. Axel Klein
Prof. Dr. Francis Verpoort
Dr. Shuang Xiao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organometallic compounds
  • transition metals
  • lanthanides
  • actinides
  • main group elements
  • organometallic compounds in catalysis
  • organometallic compounds as molecular emitters
  • organometallic compounds in bio-imaging
  • organometallic compounds in electroluminescence
  • organometallic compounds in sensing
  • organometallic compounds in energy conversion
  • organometallic compounds in light harvesting
  • organometallic compounds in magnetism
  • organometallic compounds in photonics
  • organometallic compounds in coordination polymer
  • organometallic compounds in metal–organic framework
  • organometallic compounds in materials science
  • organometallic compounds in supramolecular chemistry and in crystal engineering
  • computational/theoretical organometallic chemistry
  • further areas for development and new perspectives

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6540 KiB  
Article
Supramolecular Assemblies in Mn(II) and Zn(II) Metal–Organic Compounds Involving Phenanthroline and Benzoate: Experimental and Theoretical Studies
by Mridul Boro, Subham Banik, Rosa M. Gomila, Antonio Frontera, Miquel Barcelo-Oliver and Manjit K. Bhattacharyya
Inorganics 2024, 12(5), 139; https://doi.org/10.3390/inorganics12050139 - 13 May 2024
Viewed by 724
Abstract
Two new Mn(II) and Zn(II) metal–organic compounds of 1,10-phenanthroline and methyl benzoates viz. [Mn(phen)2Cl2]2-ClBzH (1) and [Zn(4-MeBz)2(2-AmPy)2] (2) (where 4-MeBz = 4-methylbenzoate, 2-AmPy = 2-aminopyridine, phen = 1,10-phenanthroline, 2-ClBzH = [...] Read more.
Two new Mn(II) and Zn(II) metal–organic compounds of 1,10-phenanthroline and methyl benzoates viz. [Mn(phen)2Cl2]2-ClBzH (1) and [Zn(4-MeBz)2(2-AmPy)2] (2) (where 4-MeBz = 4-methylbenzoate, 2-AmPy = 2-aminopyridine, phen = 1,10-phenanthroline, 2-ClBzH = 2-chlorobenzoic acid) were synthesized and characterized using elemental analysis, TGA, spectroscopic (FTIR, electronic) and single crystal X-ray diffraction techniques. The crystal structure analysis of the compounds revealed the presence of various non-covalent interactions, which provides stability to the crystal structures. The crystal structure analysis of compound 1 revealed the formation of a supramolecular dimer of 2-ClBzH enclathrate within the hexameric host cavity formed by the neighboring monomeric units. Compound 2 is a mononuclear compound of Zn(II) where flexible binding topologies of 4-CH3Bz are observed with the metal center. Moreover, various non-covalent interactions, such as lp(O)-π, lp(Cl)-π, C–H∙∙∙Cl, π-stacking interactions as well as N–H∙∙∙O, C–H∙∙∙O and C–H∙∙∙π hydrogen bonding interactions, are found to be involved in plateauing the molecular self-association of the compounds. The remarkable enclathration of the H-bonded 2-ClBzH dimer into a supramolecular cavity formed by two [Mn(phen)2Cl2] complexes were further studied theoretically using density functional theory (DFT) calculations, the non-covalent interaction (NCI) plot index and quantum theory of atoms in molecules (QTAIM) computational tools. Synergistic effects were also analyzed using molecular electrostatic potential (MEP) surface analysis. Full article
(This article belongs to the Special Issue Feature Papers in Organometallic Chemistry 2024)
Show Figures

Graphical abstract

17 pages, 4125 KiB  
Article
Hypercoordinating Stannanes with C,N-Donor Ligands: A Structural, Computational, and Polymerization Study
by Gloria M. D’Amaral, Desiree N. Bender, Nicola Piccolo, Alan J. Lough, Robert A. Gossage, Daniel A. Foucher and R. Stephen Wylie
Inorganics 2024, 12(4), 122; https://doi.org/10.3390/inorganics12040122 - 18 Apr 2024
Viewed by 733
Abstract
Select triphenyl stannanes bearing either a formally sp2 or sp3 hybridized amine, viz 2-(pyC2H4)SnPh3 (2: py = pyridinyl), 4-(pyC2H4)SnPh3 (3), 2-(pzC2H4)SnPh3 ( [...] Read more.
Select triphenyl stannanes bearing either a formally sp2 or sp3 hybridized amine, viz 2-(pyC2H4)SnPh3 (2: py = pyridinyl), 4-(pyC2H4)SnPh3 (3), 2-(pzC2H4)SnPh3 (4: pz = pyrazyl), and Me2N(CH2)3SnPh3 (6), were prepared and characterized by NMR spectroscopy (119Sn, 13C, 1H), and additionally, in the case of 2, by single crystal X-ray diffraction. Bromination of 2 to yield 2-(pyC2H4)SnPhBr2 (8) was achieved in good yield. X-ray crystallographic analysis of 8 revealed two unique molecules with 5-coordinate Sn centers featuring Sn-N distances of 2.382 (5) and 2.363 (5) Å, respectively. The calculated structures of the non- and hypercoordinating C,N-stannanes (19) were in good agreement with available crystallographic data. The relative stabilities of hyper- and non-hypercoordinating conformers obtained from conformational sampling were determined by comparison with reference conformers and by natural bond orbital (NBO) energetic analyses. Reduction of 8 to the dihydride species, 2-(pyC2H4)SnPhH2 (9), and subsequent conversion to the polystannane, -[2-(pyC2H4)SnPh]n- (15), by transition metal-catalyzed dehydropolymerization was also achieved. Evidence for the decomposition of 15 into a redistributed distannoxane, {2-(pyC2H4)SnPh2}2O (16), was also observed. Full article
(This article belongs to the Special Issue Feature Papers in Organometallic Chemistry 2024)
Show Figures

Graphical abstract

14 pages, 4884 KiB  
Article
Design and Construction of a Mixed-Ligand Coordinated Fluorescent Complex and Its Application for Sensing Ions, Antibiotics, and Pesticides in Aqueous Solution
by Gao-Sheng Zhu, Yi Jia, Jia-Yao Ding, Hao Yin, Yan Chen, Bao-Yi Yu, Yan-Ying Zheng and Francis Verpoort
Inorganics 2024, 12(4), 93; https://doi.org/10.3390/inorganics12040093 - 22 Mar 2024
Viewed by 1025
Abstract
In this work, a fluorescent complex [Zn(NTD)2(DTP)2(H2O)2]·(H2O)0.8 (Complex Zn), (H2NTD = 1,4-naphthalenedicarboxylic acid and DTP = 3,5-di(1,2,4-triazol-1-yl)pyridine) was synthesized. The fluorescent complex was characterized by single-crystal X-ray diffraction, [...] Read more.
In this work, a fluorescent complex [Zn(NTD)2(DTP)2(H2O)2]·(H2O)0.8 (Complex Zn), (H2NTD = 1,4-naphthalenedicarboxylic acid and DTP = 3,5-di(1,2,4-triazol-1-yl)pyridine) was synthesized. The fluorescent complex was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and thermogravimetric, elemental, infrared spectroscopy, and fluorescence analyses. In the fluorescence sensing tests, Complex Zn exhibited excellent fluorescence quenching efficiency towards Fe3+, MnO4, Cr2O72−, nitrofurantoin, and imidacloprid in aqueous media. A mechanism investigation suggested that the fluorescence quenching caused by the quenchers toward the sensor was due to the inner filter effect and the fluorescence resonance energy transfer effect in the fluorescent sensing process. Full article
(This article belongs to the Special Issue Feature Papers in Organometallic Chemistry 2024)
Show Figures

Graphical abstract

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Synthesis and characterization of heterometallic first row-transition metal multinuclear pyridine-alkoxide complexes
Authors: T. Brent Gunnoe
Affiliation: University of Virginia

Title: Theoretical Studies on the Insertion Reaction Activity of Polar Olefinic Monomers Catalyzed by a Sc Complex
Authors: Xin Wen; Kaipai Ren; Wenzhen Zhang; Guangli Zhou; Yi Luo
Affiliation: State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
Abstract: The study aims to the activity of the polar monomers insertion reaction catalyzed by the cationic rare earth metal complex [(C5H5)Sc(NMe2CH2C6H4-o)]+, utilizing a combination of density functional theory (DFT) calculations and multivariate linear regression (MLR) methods. The insertion reaction activity could be described by the poisoning effect and the ease of monomer insertion, which could be represented via DFT calculated energy difference between σ- and π-coordination complexes (E) and insertion energy barrier (ΔG≠), respectively. The results indicate that E and ΔG≠ can be predicted by only several descriptors using multiple linear regression methods, with root mean squared error (RMSE) of less than 2.5 kcal/mol. Furthermore, the qualitative analysis of the MLR models provided effective information on the key factors governing the insertion reaction activity.

Title: Palladium-Catalyzed Cross-Coupling Reaction via C-H Activation of Furanyl and Thiofuranyl Substrates
Authors: Neslihan Şahin; İsmail Özdemir; David Sémeril
Affiliation: National Council for Scientific Research
Abstract: The present study explores the potential of four NHC-palladium(II) complexes derived from (Z)- or (E)-styryl-N-alkylbenzimidazolium salts, namely trans-dichloro-[(Z)-1-styryl- 3-benzyl-benzimidazol-2-yliden]pyridine palladium(II) (6), trans-dichloro-[(E)-1-styryl-3-benzyl- benzimidazol-2-yliden]pyridine palladium(II) (7), trans-dichloro-[(Z)-1-styryl-3-(3-fluorobenzyl)- benzimidazol-2-yliden]pyridine palladium(II) (8) and trans-dichloro-[(E)-1-styryl-3- (3-fluorobenzyl)-benzimidazol-2-yliden]pyridine palladium(II) (9), as pre-catalyst for the cross-coupling reactions between furanyl and thiofuranyl derivatives and arylbromides via C—H activation of the heterocycles. The structure of the four Pd(II) complexes has been elucidated through the use of multinuclear NMR, FT-IR and mass spectroscopy. Furthermore, the confor-mation, cis or trans, of the styryl substituents was geometry of two different compounds was sub-stantiated by single-crystal X-ray diffraction carried out on organometallic species 6, 8 and 9. After optimization of catalytic conditions, 1 mol % of pre-catalyst with KOAc as base in dimethyla-cetamide at 120°C for 3 hours, the complex 6 proved to be the most effective pre-catalyst agent with observed full or quasi full conversions in the cross-coupling of 4-bromoacetophenone with 2-butylfuran, 1-(2-furanyl)-ethanone, furfuryl acetate, furfural, 1-(2-thiephyl)-ethanone, thenalde-hyde and 2-methylthiophene.

Back to TopTop