Theoretical Studies on the Insertion Reaction of Polar Olefinic Monomers Mediated by a Scandium Complex
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, J.; Hu, Y. Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry. Coord. Chem. Rev. 2006, 250, 47–65. [Google Scholar] [CrossRef]
- Rünzi, T.; Mecking, S. Saturated polar-substituted polyethylene elastomers from insertion polymerization. Adv. Funct. Mater. 2014, 24, 387–395. [Google Scholar] [CrossRef]
- Dai, S.; Chen, C. Palladium-catalyzed direct synthesis of various branched, carboxylic acid-functionalized polyolefins: Characterization, derivatization, and properties. Macromolecules 2018, 51, 6818–6824. [Google Scholar] [CrossRef]
- Na, Y.; Dai, S.; Chen, C. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). Macromolecules 2018, 51, 4040–4048. [Google Scholar] [CrossRef]
- Sui, X.; Hong, C.; Pang, W.; Chen, C. Unsymmetrical α-diimine pall adium catalysts and their properties in olefin (co)polymerization. Mater. Chem. Front. 2017, 1, 967–972. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Z.; Cui, D.; Liu, X. Precisely Controlled Polymerization of Styrene and Conjugated Dienes by Group 3 Single-Site Catalysts. ChemCatChem 2018, 10, 42–61. [Google Scholar] [CrossRef]
- Liu, B.; Qiao, K.; Fang, J.; Wang, T.; Wang, Z.; Liu, D.; Xie, Z.; Maron, L.; Cui, D. Mechanism and Effect of Polar Styrenes on Scandium-Catalyzed Copolymerization with Ethylene. Angew. Chem. Int. Ed. 2018, 57, 14896–14901. [Google Scholar] [CrossRef]
- Liu, D.; Wang, M.; Wang, Z.; Wu, C.; Pan, Y.; Cui, D. Stereoselective Copolymerization of Unprotected Polar and Nonpolar Styrenes by an Yttrium Precursor: Control of Polar-Group Distribution and Mechanism. Angew. Chem. Int. Ed. 2017, 56, 2714–2719. [Google Scholar] [CrossRef]
- Wang, T.; Liu, D.; Cui, D. Highly Syndioselective Coordination (Co)Polymerization of ortho-Fluorostyrene. Macromolecules 2019, 52, 9555–9560. [Google Scholar] [CrossRef]
- Liu, D.; Yao, C.; Wang, R.; Wang, M.; Wang, Z.; Wu, C.; Lin, F.; Li, S.; Wan, X.; Cui, D. Highly Isoselective Coordination Polymerization of Ortho-Methoxystyrene with beta-Diketiminato Rare-Earth-Metal Precursors. Angew. Chem. Int. Ed. 2015, 54, 5205–5209. [Google Scholar] [CrossRef]
- Xu, T.; Liu, J.; Lu, X. Highly Active Half-Metallocene Yttrium Catalysts for Living and Chemoselective Polymerization of Allyl Methacrylate. Macromolecules 2015, 48, 7428–7434. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Zhao, Z.; Cui, D. Chemo- and Stereoselective Polymerization of Polar Divinyl Monomers by Rare-Earth Complexes. Macromolecules 2021, 54, 3181–3190. [Google Scholar] [CrossRef]
- Yan, C.; Liu, Z.; Xu, T. Regioselective, stereoselective, and living polymerization of divinyl pyridine monomers using rare earth catalysts. Polym. Chem. 2020, 11, 2044–2052. [Google Scholar] [CrossRef]
- Xu, P.; Wu, L.; Dong, L.; Xu, X. Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs. Molecules 2018, 23, 360. [Google Scholar] [CrossRef]
- Nishiura, M.; Guo, F.; Hou, Z. Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization, Carbometalation, and Hydroarylation. Acc. Chem. Res. 2015, 48, 2209–2220. [Google Scholar] [CrossRef]
- Nishiura, M.; Hou, Z. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls. Nat. Chem. 2010, 2, 257–268. [Google Scholar] [CrossRef]
- Wang, C.; Luo, G.; Nishiura, M.; Song, G.; Yamamoto, A.; Luo, Y.; Hou, Z. Heteroatom-assisted olefin polymerization by rare-earth metal catalysts. Sci. Adv. 2017, 3, e1701011. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Wang, B.; Lohr, T.; Marks, T. Scandium-catalyzed self-assisted polar co-monomer enchainment in ethylene polymerization. Angew. Chem. Int. Ed. 2017, 56, 15964–15968. [Google Scholar] [CrossRef]
- Yamamoto, A.; Nishiura, M.; Oyamada, J.; Koshino, H.; Hou, Z. Scandium-Catalyzed Syndiospecific Chain-Transfer Polymerization of Styrene Using Anisoles as a Chain Transfer Agent. Macromolecules 2016, 49, 2458–2466. [Google Scholar] [CrossRef]
- Guo, F.; Nishiura, M.; Koshino, H.; Hou, Z. Cycloterpolymerization of 1,6-Heptadiene with Ethylene and Styrene Catalyzed by a THF-Free Half-Sandwich Scandium Complex. Macromolecules 2011, 44, 2400–2403. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Nishiura, M.; Yang, Y.; Luo, G.; Luo, Y.; Hou, Z. Scandium-Catalyzed Regio- and Stereoselective Cyclopolymerization of Functionalized α,ω-Dienes and Copolymerization with Ethylene. J. Am. Chem. Soc. 2019, 141, 12624–12633. [Google Scholar] [CrossRef]
- Fu, T.; Jiang, L.; Sun, H.; Hou, Z.; Guo, F. Scandium-catalyzed stereoselective block and alternating copolymerization of diphenylphosphinostyrenes and isoprene. Polym. Chem. 2022, 13, 3498–3505. [Google Scholar]
- Guo, F.; Jiao, N.; Jiang, L.; Li, Y.; Hou, Z. Scandium-Catalyzed Syndiospecific Polymerization of Halide-Substituted Styrenes and Their Copolymerization with Styrene. Macromolecules 2017, 50, 8398–8405. [Google Scholar] [CrossRef]
- Yamamoto, A.; Nishiura, M.; Yang, Y.; Hou, Z. Cationic Scandium Anisyl Species in Styrene Polymerization Using Anisole and N,N-Dimethyl-o-toluidine as Chain-Transfer Agents. Organometallics 2017, 36, 4635–4642. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Yang, Y.; Nishiura, M.; Hou, Z. Co-syndiospecific Alternating Copolymerization of Functionalized Propylenes and Styrene by Rare-Earth Catalysts. Angew. Chem. Int. Ed. 2020, 59, 7173–7177. [Google Scholar] [CrossRef]
- Shi, Z.; Guo, F.; Li, Y.; Hou, Z. Synthesis of Amino-Containing Syndiotactic Polystyrene as Efficient Polymer Support for Palladium Nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 5–9. [Google Scholar] [CrossRef]
- Pan, Y.; Rong, W.; Jian, Z.; Cui, D. Ligands Dominate Highly Syndioselective Polymerization of Styreneby Using Constrained-geometry-configuration Rare-earth Metal Precursors. Macromolecules 2012, 45, 1248–1253. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Cui, D. Statistically Syndioselective Coordination (Co)polymerization of 4-Methylthiostyrene. Macromolecules 2016, 49, 781–787. [Google Scholar] [CrossRef]
- Liu, D.; Wang, R.; Wang, M.; Wu, C.; Wang, Z.; Yao, C.; Liu, B.; Wan, X.; Cui, D. Syndioselective coordination polymerization of unmasked polar methoxystyrenes using a pyridenylmethylene fluorenyl yttrium precursor. Chem. Commun. 2015, 51, 4685–4688. [Google Scholar] [CrossRef]
- Zhong, Y.; Wu, Y.; Cui, D. Highly Syndiotactic Coordination (Co)polymerization of para-Methylselenostyrene. Macromolecules 2021, 54, 1754–1759. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, S.; Cui, D. Synthesis of Poly(Ethyl vinyl ether) with high molecular weight by rare-earth metal cationic catalysts. Polymer 2021, 226, 123790. [Google Scholar] [CrossRef]
- Harper, K.; Vilardi, S.; Sigman, M. Prediction of catalyst and substrate performance in the enantioselective propargylation of aliphatic ketones by a multidimensional model of steric effects. J. Am. Chem. Soc. 2013, 135, 2482–2485. [Google Scholar] [CrossRef]
- Mougel, V.; Santiago, C.; Zhizhko, P.; Bess, E.; Varga, J.; Frater, G.; Sigman, M.; Copéret, C. Quantitatively analyzing metathesis catalyst activity and structural features in silica-supported tungsten imido−alkylidene complexes. J. Am. Chem. Soc. 2015, 137, 6699–6704. [Google Scholar] [CrossRef]
- Sigman, M.; Harper, K.; Bess, E.; Milo, A. The development of multidimensional analysis tools for asymmetric catalysis and beyond. Acc. Chem. Res. 2016, 49, 1292–1301. [Google Scholar] [CrossRef]
- Durand, D.; Fey, N. Computational ligand descriptors for catalyst design. Chem. Rev. 2019, 119, 6561–6594. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, G.; Wang, X.; Kang, X.; Cui, D.; Hou, Z.; Luo, Y. DFT studies on the polymerization of Functionalized styrenes catalyzed by rare-earth-metal complexes: Factors affecting C-H activation relevant to step-growth polymerization. Organometallics 2018, 37, 3210–3218. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, G.; Kang, X.; Guo, F.; Zhu, X.; Zhen, R.; Hou, Z.; Luo, Y. “C-H…π Interaction” regulates the stereoselectivity in olefin polymerization. Chem. Commun. 2019, 55, 6689–6692. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Y.; Qu, J.; Luo, Y. Effects of nucleophilic ligands on the chain initiation efficiency of polar monomer polymerizations catalyzed by 2-methoxyethylaminobis(phenolate)yttrium complexes: A DFT study. Dalton Trans. 2017, 46, 16993–16999. [Google Scholar] [CrossRef]
- Shi, X.; Nishiura, M.; Hou, Z. Simultaneous chain-growth and step-growth polymerization of methoxystyrenes by rare-earth catalysts. Angew. Chem. Int. Ed. 2016, 55, 14812–14817. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, L.; Diao, K.; Hou, Z. Stereoselective copolymerization of 4-(N,N-diphenylamino)styrene and isoprene by a C5H5-ligated scandium catalyst: Synthesis of amino-functionalized crystalline styrenic thermoplastic elastomers. Polym. Chem. 2020, 11, 1314–1320. [Google Scholar]
- Chai, Y.; Wu, C.; Liu, D.; Run, M.; Cui, D. Self-assisted stereospecific polymerization of unmasked polar 4-methylthio-1-butene. Sci. China Chem. 2019, 62, 761–766. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Zhao, Y.; Luo, Y. Multivariate Linear Regression Models to Predict Monomer Poisoning Effect in Ethylene/Polar Monomer Copolymerization Catalyzed by Late Transition Metals. Inorganics 2022, 10, 26. [Google Scholar] [CrossRef]
- Lu, H.; Kang, X.; Yu, H.; Zhang, W.; Luo, Y. Using a single complex to predict the reaction energy profile: A case study of Pd/Ni-catalyzed ethylene polymerization. Dalton Trans. 2023, 52, 14790–14796. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree Fock and local density functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Chem. Phys. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 1987, 86, 866–872. [Google Scholar] [CrossRef]
- Schwerdtfeger, P.; Dolg, M.; Schwarz, W.; Bowmaker, G.; Boyd, P. Relativistic effects in gold Chemistry. I. Diatomic gold compounds. J. Chem. Phys. 1989, 91, 1762–1774. [Google Scholar] [CrossRef]
- Andrae, D.; Haußermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D. Benchmark energetic data in a model system for Grubbs II metathesis catalysis and their use for the development, assessment, and validation of electronic structure methods. J. Chem. Theory Comput. 2009, 5, 324–333. [Google Scholar] [CrossRef]
- Ittel, S.; Johnson, L.; Brookhart, M. Late-metal catalysts for ethylene homo-and copolymerization. Chem. Rev. 2000, 100, 1169–1204. [Google Scholar] [CrossRef]
- Guo, J.; Minko, Y.; Santiago, C.; Santiago, C.; Sigman, M. Developing comprehensive computational parameter sets to describe the performance of pyridine-oxazoline and related ligands. ACS Catal. 2017, 7, 4144–4151. [Google Scholar] [CrossRef]
- Cramer, R., III. Quantitative drug design. Annu. Rep. Med. Chem. 1976, 11, 301–310. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Ren, K.; Zhang, W.; Zhou, G.; Luo, Y. Theoretical Studies on the Insertion Reaction of Polar Olefinic Monomers Mediated by a Scandium Complex. Inorganics 2024, 12, 172. https://doi.org/10.3390/inorganics12060172
Wen X, Ren K, Zhang W, Zhou G, Luo Y. Theoretical Studies on the Insertion Reaction of Polar Olefinic Monomers Mediated by a Scandium Complex. Inorganics. 2024; 12(6):172. https://doi.org/10.3390/inorganics12060172
Chicago/Turabian StyleWen, Xin, Kaipai Ren, Wenzhen Zhang, Guangli Zhou, and Yi Luo. 2024. "Theoretical Studies on the Insertion Reaction of Polar Olefinic Monomers Mediated by a Scandium Complex" Inorganics 12, no. 6: 172. https://doi.org/10.3390/inorganics12060172
APA StyleWen, X., Ren, K., Zhang, W., Zhou, G., & Luo, Y. (2024). Theoretical Studies on the Insertion Reaction of Polar Olefinic Monomers Mediated by a Scandium Complex. Inorganics, 12(6), 172. https://doi.org/10.3390/inorganics12060172