ijms-logo

Journal Browser

Journal Browser

Special Issue "Nutrition and Cardiovascular Health"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (31 July 2019).

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors

Dr. Paramjit S. Tappia
Website
Guest Editor
Dr. Heather Blewett
Website
Guest Editor
Agriculture and Agri-Food Canada, Government of Canada
Interests: human nutrition; clinical trials; immunology; diabetes; obesity; cardiovascular disease

Special Issue Information

Dear Colleagues,

There is unequivocal experimental, epidemiological and clinical evidence demonstrating a correlation between diet and increased risk of cardiovascular disease (CVD). While nutritionally-poor diets can have a significant negative impact on cardiovascular health, dietary interventions with specific nutrients and/or functional foods are considered cost-effective and efficient components of prevention strategies. It has been estimated that nutritional factors may be responsible for approximately 40% of all CVD. Indeed, in one of the seminal studies conducted on modifiable risk factors and heart health (the INTERHEART study), >90% of all myocardial infarctions were attributed to preventable environmental factors with nutrition identified as one of the important determinants of CVD. There is increasing public interest and scientific investigation into establishing dietary approaches that can be undertaken for the prevention and treatment of CVD. This Special Issue provides an insight into the influential role of nutrition and dietary habits on cardiovascular health and disease, as well as their mechanisms of therapeutic and preventive action. In view of the impact of the nutritional experience of the developing fetus, the role of epigenetics and maternal nutrition on the risk of developing cardiovascular complications in later life will also be highlighted.

Dr. Paramjit S. Tappia
Dr. Heather Blewett
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Diet
  • Cardiovascular disease
  • Nutrition
  • Hypertension
  • Cholesterol
  • Myocardial infarction
  • Saturated fat
  • Developmental origins of health and disease
  • Anti-oxidants

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial
Nutrition and Cardiovascular Health
Int. J. Mol. Sci. 2020, 21(7), 2284; https://doi.org/10.3390/ijms21072284 - 26 Mar 2020
Abstract
There is unequivocal experimental, epidemiological and clinical evidence demonstrating a correlation between diet and increased risk of cardiovascular disease (CVD) [...] Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available

Research

Jump to: Editorial, Review

Open AccessArticle
Vitamin D Attenuates Loss of Endothelial Biomarker Expression in Cardio-Endothelial Cells
Int. J. Mol. Sci. 2020, 21(6), 2196; https://doi.org/10.3390/ijms21062196 - 22 Mar 2020
Cited by 4
Abstract
Vitamin D is associated with cardiovascular health through activating the vitamin D receptor that targets genes related to cardiovascular disease (CVD). The human cardiac microvascular endothelial cells (HCMECs) were used to develop mechanically and TGF-β1-induced fibrosis models, and the rat was used as [...] Read more.
Vitamin D is associated with cardiovascular health through activating the vitamin D receptor that targets genes related to cardiovascular disease (CVD). The human cardiac microvascular endothelial cells (HCMECs) were used to develop mechanically and TGF-β1-induced fibrosis models, and the rat was used as the isoproterenol (ISO)-induced fibrosis model. The rats were injected with ISO for the first five days, followed by vitamin D injection for the consecutive three weeks before being sacrificed on the fourth week. Results showed that mechanical stretching reduced endothelial cell marker CD31 and VE-cadherin protein expressions, as well as increased α-smooth muscle actin (α-SMA) and fibronectin (FN). The transforming growth factor-β1 (TGF-β1) reduced CD31, and increased α-SMA and FN protein expression levels. Vitamin D presence led to higher protein expression of CD31, and lower protein expressions of α-SMA and FN compared to the control in the TGF-β1-induced fibrosis model. Additionally, protein expression of VE-cadherin was increased and fibroblast-specific protein-1 (FSP1) was decreased after vitamin D treatment in the ISO-induced fibrosis rat. In conclusion, vitamin D slightly inhibited fibrosis development in cell and animal models. Based on this study, the beneficial effect of vitamin D may be insignificant; however, further investigation of vitamin D’s effect in the long-term is required in the future. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessArticle
Correlation of Vitamin D with Inflammatory Cytokines, Atherosclerotic Parameters, and Lifestyle Factors in the Setting of Heart Failure: A 12-Month Follow-Up Study
Int. J. Mol. Sci. 2019, 20(22), 5811; https://doi.org/10.3390/ijms20225811 - 19 Nov 2019
Cited by 5
Abstract
Vitamin D deficiency is highly prevalent worldwide. It has been associated with heart failure (HF) given its immunoregulatory functions. In-vitro and animal models have shown protective roles through mechanisms involving procollagen-1, JNK2, calcineurin/NFAT, NF-κB, MAPK, Th1, Th2, Th17, cytokines, cholesterol-efflux, oxLDL, and GLUT4, [...] Read more.
Vitamin D deficiency is highly prevalent worldwide. It has been associated with heart failure (HF) given its immunoregulatory functions. In-vitro and animal models have shown protective roles through mechanisms involving procollagen-1, JNK2, calcineurin/NFAT, NF-κB, MAPK, Th1, Th2, Th17, cytokines, cholesterol-efflux, oxLDL, and GLUT4, among others. A 12-month follow-up in HF patients showed a high prevalence of vitamin D deficiency, with no seasonal variation (64.7–82.4%). A positive correlation between serum 25(OH)D concentration and dietary intake of vitamin D-rich foods was found. A significant inverse correlation with IL-1β (R = −0.78), TNF-α (R = −0.53), IL-6 (R = −0.42), IL-8 (R = −0.41), IL-17A (R = −0.31), LDL-cholesterol (R = −0.51), Apo-B (R = −0.57), total-cholesterol (R = –0.48), and triglycerides (R = −0.32) was shown. Cluster analysis demonstrated that patients from cluster three, with the lowest 25(OH)D levels, presented the lowermost vitamin D intake, IL-10 (1.0 ± 0.9 pg/mL), and IL-12p70 (0.5 ± 0.4 pg/mL), but the highest TNF-α (9.1 ± 3.5 pg/mL), IL-8 (55.6 ± 117.1 pg/mL), IL-17A (3.5 ± 2.0 pg/mL), total-cholesterol (193.9 ± 61.4 mg/dL), LDL-cholesterol (127.7 ± 58.2 mg/dL), and Apo-B (101.4 ± 33.4 mg/dL) levels, compared with patients from cluster one. Although the role of vitamin D in the pathogenesis of HF in humans is still uncertain, we applied the molecular mechanisms of in-vitro and animal models to explain our findings. Vitamin D deficiency might contribute to inflammation, remodeling, fibrosis, and atherosclerosis in patients with HF. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Graphical abstract

Open AccessArticle
Ginseng Berry Extract Rich in Phenolic Compounds Attenuates Oxidative Stress but not Cardiac Remodeling post Myocardial Infarction
Int. J. Mol. Sci. 2019, 20(4), 983; https://doi.org/10.3390/ijms20040983 - 24 Feb 2019
Cited by 5
Abstract
The cardioprotective effects of ginseng root extracts have been reported. However, nothing is known about the myocardial actions of the phenolic compounds enriched in ginseng berry. Therefore, this study was undertaken to investigate the effects of American ginseng berry extract (GBE) in an [...] Read more.
The cardioprotective effects of ginseng root extracts have been reported. However, nothing is known about the myocardial actions of the phenolic compounds enriched in ginseng berry. Therefore, this study was undertaken to investigate the effects of American ginseng berry extract (GBE) in an experimental model of myocardial infarction (MI). Coronary artery ligation was performed on Sprague–Dawley male rats to induce MI after which animals were randomized into groups receiving either distilled water or GBE intragastrically for 8 weeks. Echocardiography and assays for malondialdehyde (MDA) and TNF-α were conducted. Flow cytometry was used to test the effects of GBE on T cell phenotypes and cytokine production. Although GBE did not improve the cardiac functional parameters, it significantly attenuated oxidative stress in post-MI rat hearts. GBE treatment also resulted in lower than control levels of TNF-α in post-MI rat hearts indicating a strong neutralizing effect of GBE on this cytokine. However, there was no effect of GBE on the proportion of different T cell subsets or ex-vivo cytokine production. Taken together, the present study demonstrates GBE reduces oxidative stress, however no effect on cardiac structure and function in post-MI rats. Moreover, reduction of TNF-α levels below baseline raises concern regarding its use as prophylactic or preventive adjunct therapy in cardiovascular disease. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessArticle
Standardized Aronia melanocarpa Extract as Novel Supplement against Metabolic Syndrome: A Rat Model
Int. J. Mol. Sci. 2019, 20(1), 6; https://doi.org/10.3390/ijms20010006 - 20 Dec 2018
Cited by 5
Abstract
The aim of our study was to examine the effects of different dietary strategies, high-fat (HFd) or standard diet (Sd) alone or in combination with standardized oral supplementation (0.45 mL/kg/day) of Aronia melanocarpa extract (SAE) in rats with metabolic syndrome (MetS). SAE is [...] Read more.
The aim of our study was to examine the effects of different dietary strategies, high-fat (HFd) or standard diet (Sd) alone or in combination with standardized oral supplementation (0.45 mL/kg/day) of Aronia melanocarpa extract (SAE) in rats with metabolic syndrome (MetS). SAE is an official product of pharmaceutical company Pharmanova (Belgrade, Serbia); however, the procedure for extraction was done by EU-Chem company (Belgrade, Serbia). Rats were divided randomly into six groups: control with Sd, control with Sd and SAE, MetS with HFd, MetS with HFd and SAE, MetS with Sd and MetS with Sd and SAE during 4 weeks. At the end of the 4-week protocol, cardiac function and liver morphology were assessed, while in the blood samples glucose, insulin, iron levels and systemic redox state were determined. Our results demonstrated that SAE had the ability to lower blood pressure and exert benefits on in vivo and ex vivo heart function. Moreover, SAE improved glucose tolerance, attenuated pathological liver alterations and oxidative stress present in MetS. Obtained beneficial effects of SAE were more prominent in combination with changing dietary habits. Promising potential of SAE supplementation alone or in combination with different dietary protocols in triggering cardioprotection should be further examined in future. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessArticle
The Functional Role of Zinc Finger E Box-Binding Homeobox 2 (Zeb2) in Promoting Cardiac Fibroblast Activation
Int. J. Mol. Sci. 2018, 19(10), 3207; https://doi.org/10.3390/ijms19103207 - 17 Oct 2018
Cited by 3
Abstract
Following cardiac injury, fibroblasts are activated and are termed as myofibroblasts, and these cells are key players in extracellular matrix (ECM) remodeling and fibrosis, itself a primary contributor to heart failure. Nutraceuticals have been shown to blunt cardiac fibrosis in both in-vitro and [...] Read more.
Following cardiac injury, fibroblasts are activated and are termed as myofibroblasts, and these cells are key players in extracellular matrix (ECM) remodeling and fibrosis, itself a primary contributor to heart failure. Nutraceuticals have been shown to blunt cardiac fibrosis in both in-vitro and in-vivo studies. However, nutraceuticals have had conflicting results in clinical trials, and there are no effective therapies currently available to specifically target cardiac fibrosis. We have previously shown that expression of the zinc finger E box-binding homeobox 2 (Zeb2) transcription factor increases as fibroblasts are activated. We now show that Zeb2 plays a critical role in fibroblast activation. Zeb2 overexpression in primary rat cardiac fibroblasts is associated with significantly increased expression of embryonic smooth muscle myosin heavy chain (SMemb), ED-A fibronectin and α-smooth muscle actin (α-SMA). We found that Zeb2 was highly expressed in activated myofibroblast nuclei but not in the nuclei of inactive fibroblasts. Moreover, ectopic Zeb2 expression in myofibroblasts resulted in a significantly less migratory phenotype with elevated contractility, which are characteristics of mature myofibroblasts. Knockdown of Zeb2 with siRNA in primary myofibroblasts did not alter the expression of myofibroblast markers, which may indicate that Zeb2 is functionally redundant with other profibrotic transcription factors. These findings add to our understanding of the contribution of Zeb2 to the mechanisms controlling cardiac fibroblast activation. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Review

Jump to: Editorial, Research

Open AccessReview
Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020
Int. J. Mol. Sci. 2020, 21(4), 1362; https://doi.org/10.3390/ijms21041362 - 18 Feb 2020
Cited by 20
Abstract
The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood (especially fatty fish), supplements and concentrated pharmaceutical preparations. Long-term prospective cohort studies consistently demonstrate an association between higher intakes of fish, fatty fish and marine n-3 fatty [...] Read more.
The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood (especially fatty fish), supplements and concentrated pharmaceutical preparations. Long-term prospective cohort studies consistently demonstrate an association between higher intakes of fish, fatty fish and marine n-3 fatty acids (EPA + DHA) or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease (CHD) and myocardial infarction (MI), and cardiovascular mortality in the general population. This cardioprotective effect of EPA and DHA is most likely due to the beneficial modulation of a number of known risk factors for CVD, such as blood lipids, blood pressure, heart rate and heart rate variability, platelet aggregation, endothelial function, and inflammation. Evidence for primary prevention of CVD through randomised controlled trials (RCTs) is relatively weak. In high-risk patients, especially in the secondary prevention setting (e.g., post-MI), a number of large RCTs support the use of EPA + DHA (or EPA alone) as confirmed through a recent meta-analysis. This review presents some of the key studies that have investigated EPA and DHA in the primary and secondary prevention of CVD, describes potential mechanisms for their cardioprotective effect, and evaluates the more recently published RCTs in the context of existing scientific literature. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessReview
Micronutrient Depletion in Heart Failure: Common, Clinically Relevant and Treatable
Int. J. Mol. Sci. 2019, 20(22), 5627; https://doi.org/10.3390/ijms20225627 - 11 Nov 2019
Cited by 2
Abstract
Heart failure (HF) is a chronic condition with many imbalances, including nutritional issues. Next to sarcopenia and cachexia which are clinically evident, micronutrient deficiency is also present in HF. It is involved in HF pathophysiology and has prognostic implications. In general, most widely [...] Read more.
Heart failure (HF) is a chronic condition with many imbalances, including nutritional issues. Next to sarcopenia and cachexia which are clinically evident, micronutrient deficiency is also present in HF. It is involved in HF pathophysiology and has prognostic implications. In general, most widely known micronutrients are depleted in HF, which is associated with symptoms and adverse outcomes. Nutritional intake is important but is not the only factor reducing the micronutrient availability for bodily processes, because absorption, distribution, and patient comorbidity may play a major role. In this context, interventional studies with parenteral micronutrient supplementation provide evidence that normalization of micronutrients is associated with improvement in physical performance and quality of life. Outcome studies are underway and should be reported in the following years. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Open AccessReview
Klotho: A Major Shareholder in Vascular Aging Enterprises
Int. J. Mol. Sci. 2019, 20(18), 4637; https://doi.org/10.3390/ijms20184637 - 19 Sep 2019
Cited by 6
Abstract
Accelerated vascular aging is a condition that occurs as a complication of several highly prevalent inflammatory conditions such as chronic kidney disease, cancer, HIV infection and diabetes. Age-associated vascular alterations underlie a continuum of expression toward clinically overt cardiovascular disease. This has contributed [...] Read more.
Accelerated vascular aging is a condition that occurs as a complication of several highly prevalent inflammatory conditions such as chronic kidney disease, cancer, HIV infection and diabetes. Age-associated vascular alterations underlie a continuum of expression toward clinically overt cardiovascular disease. This has contributed to the striking epidemiologic transition whereby such noncommunicable diseases have taken center stage as modern-day global epidemics and public health problems. The identification of α-Klotho, a remarkable protein that confers powerful anti-aging properties has stimulated significant interest. In fact, emerging data have provided fundamental rationale for Klotho-based therapeutic intervention for vascular diseases and multiple other potential indications. However, the application of such discoveries in Klotho research remains fragmented due to significant gaps in our molecular understanding of Klotho biology, as well as hurdles in clinical research and experimental barriers that must first be overcome. These advances will be critical to establish the scientific platform from which future Klotho-based interventional trials and therapeutic enterprises can be successfully launched. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessReview
Cardiotonic Steroids—A Possible Link Between High-Salt Diet and Organ Damage
Int. J. Mol. Sci. 2019, 20(3), 590; https://doi.org/10.3390/ijms20030590 - 30 Jan 2019
Cited by 6
Abstract
High dietary salt intake has been listed among the top ten risk factors for disability-adjusted life years. We discuss the role of endogenous cardiotonic steroids in mediating the dietary salt-induced hypertension and organ damage. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessReview
Acute and Chronic Effects of Cocaine on Cardiovascular Health
Int. J. Mol. Sci. 2019, 20(3), 584; https://doi.org/10.3390/ijms20030584 - 29 Jan 2019
Cited by 11
Abstract
Cardiac complications resulting from cocaine use have been extensively studied because of the complicated pathophysiological mechanisms. This study aims to review the underlying cellular and molecular mechanisms of acute and chronic effects of cocaine on the cardiovascular system with a specific focus on [...] Read more.
Cardiac complications resulting from cocaine use have been extensively studied because of the complicated pathophysiological mechanisms. This study aims to review the underlying cellular and molecular mechanisms of acute and chronic effects of cocaine on the cardiovascular system with a specific focus on human studies. Studies have consistently reported the acute effects of cocaine on the heart (e.g., electrocardiographic abnormalities, acute hypertension, arrhythmia, and acute myocardial infarction) through multifactorial mechanisms. However, variable results have been reported for the chronic effects of cocaine. Some studies found no association of cocaine use with coronary artery disease (CAD), while others reported its association with subclinical coronary atherosclerosis. These inconsistent findings might be due to the heterogeneity of study subjects with regard to cardiac risk. After cocaine use, populations at high risk for CAD experienced coronary atherosclerosis whereas those at low risk did not experience CAD, suggesting that the chronic effects of cocaine were more likely to be prominent among individuals with higher CAD risk. Studies also suggested that risky behaviors and cardiovascular risks may affect the association between cocaine use and mortality. Our study findings highlight the need for education regarding the deleterious effects of cocaine, and access to interventions for cocaine abusers. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessReview
Nutrition and Cardiovascular Health
Int. J. Mol. Sci. 2018, 19(12), 3988; https://doi.org/10.3390/ijms19123988 - 11 Dec 2018
Cited by 30
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries, representing almost 30% of all deaths worldwide. Evidence shows the effectiveness of healthy dietary patterns and lifestyles for the prevention of CVD. Furthermore, the rising incidence of CVD over the last [...] Read more.
Cardiovascular disease (CVD) is the leading cause of death in Western countries, representing almost 30% of all deaths worldwide. Evidence shows the effectiveness of healthy dietary patterns and lifestyles for the prevention of CVD. Furthermore, the rising incidence of CVD over the last 25 years has become a public health priority, especially the prevention of CVD (or cardiovascular events) through lifestyle interventions. Current scientific evidence shows that Western dietary patterns compared to healthier dietary patterns, such as the ‘Mediterranean diet’ (MeDiet), leads to an excessive production of proinflammatory cytokines associated with a reduced synthesis of anti-inflammatory cytokines. In fact, dietary intervention allows better combination of multiple foods and nutrients. Therefore, a healthy dietary pattern shows a greater magnitude of beneficial effects than the potential effects of a single nutrient supplementation. This review aims to identify potential targets (food patterns, single foods, or individual nutrients) for preventing CVD and quantifies the magnitude of the beneficial effects observed. On the other hand, we analyze the possible mechanisms implicated in this cardioprotective effect. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Graphical abstract

Open AccessReview
Relationship of Circulating Irisin with Body Composition, Physical Activity, and Cardiovascular and Metabolic Disorders in the Pediatric Population
Int. J. Mol. Sci. 2018, 19(12), 3727; https://doi.org/10.3390/ijms19123727 - 23 Nov 2018
Cited by 12
Abstract
Exercise-induced irisin, a recently discovered myokine, has been linked to insulin resistance, obesity, and other diseases in adults; however, information in children is scarce and contradictory. We analyzed the limited evidence of irisin’s effects in children and adolescents, and its association with body [...] Read more.
Exercise-induced irisin, a recently discovered myokine, has been linked to insulin resistance, obesity, and other diseases in adults; however, information in children is scarce and contradictory. We analyzed the limited evidence of irisin’s effects in children and adolescents, and its association with body composition, exercise training, cardiovascular risk factors, and metabolic diseases, as well as the results of dietetic interventions. Both positive and negative correlations between irisin concentrations and body mass index, fat mass, fat-free mass, and other anthropometric parameters were found. Likewise, contradictory evidence was shown associating irisin plasma levels with cardiovascular and metabolic parameters such as glucose, insulin resistance, and cholesterol and other lipid and fatty acid plasma levels in healthy children, as well as in those with obesity and the metabolic syndrome. Gender, puberty, and hormonal differences were also examined. Furthermore, important contradictory findings according to the type and duration of exercise and of dietetic interventions in healthy and unhealthy subjects were demonstrated. In addition, correlations between mother–infant relations and circulating irisin were also identified. This review discusses the potential role of irisin in health and disease in the pediatric population. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessReview
Fish, Fish Oils and Cardioprotection: Promise or Fish Tale?
Int. J. Mol. Sci. 2018, 19(12), 3703; https://doi.org/10.3390/ijms19123703 - 22 Nov 2018
Cited by 15
Abstract
Fish and commercially available fish oil preparations are rich sources of long-chain omega-3 polyunsaturated fatty acids. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the most important fatty acids in fish oil. Following dietary intake, these fatty acids get incorporated into the cell [...] Read more.
Fish and commercially available fish oil preparations are rich sources of long-chain omega-3 polyunsaturated fatty acids. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the most important fatty acids in fish oil. Following dietary intake, these fatty acids get incorporated into the cell membrane phospholipids throughout the body, especially in the heart and brain. They play an important role in early brain development during infancy, and have also been shown to be of benefit in dementia, depression, and other neuropsychiatric disorders. Early epidemiologic studies show an inverse relationship between fish consumption and the risk of coronary heart disease. This led to the identification of the cardioprotective role of these marine-derived fatty acids. Many experimental studies and some clinical trials have documented the benefits of fish oil supplementation in decreasing the incidence and progression of atherosclerosis, myocardial infarction, heart failure, arrhythmias, and stroke. Possible mechanisms include reduction in triglycerides, alteration in membrane fluidity, modulation of cardiac ion channels, and anti-inflammatory, anti-thrombotic, and anti-arrhythmic effects. Fish oil supplements are generally safe, and the risk of toxicity with methylmercury, an environmental toxin found in fish, is minimal. Current guidelines recommend the consumption of either one to two servings of oily fish per week or daily fish oil supplements (around 1 g of omega-3 polyunsaturated fatty acids per day) in adults. However, recent large-scale studies have failed to demonstrate any benefit of fish oil supplements on cardiovascular outcomes and mortality. Here, we review the different trials that evaluated the role of fish oil in cardiovascular diseases. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Open AccessReview
Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension
Int. J. Mol. Sci. 2018, 19(6), 1724; https://doi.org/10.3390/ijms19061724 - 11 Jun 2018
Cited by 24
Abstract
Arterial hypertension is a disease with a complex pathogenesis. Despite considerable knowledge about this socially significant disease, the role of magnesium deficiency (MgD) as a risk factor is not fully understood. Magnesium is a natural calcium antagonist. It potentiates the production of local [...] Read more.
Arterial hypertension is a disease with a complex pathogenesis. Despite considerable knowledge about this socially significant disease, the role of magnesium deficiency (MgD) as a risk factor is not fully understood. Magnesium is a natural calcium antagonist. It potentiates the production of local vasodilator mediators (prostacyclin and nitric oxide) and alters vascular responses to a variety of vasoactive substances (endothelin-1, angiotensin II, and catecholamines). MgD stimulates the production of aldosterone and potentiates vascular inflammatory response, while expression/activity of various antioxidant enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and the levels of important antioxidants (vitamin C, vitamin E, and selenium) are decreased. Magnesium balances the effects of catecholamines in acute and chronic stress. MgD may be associated with the development of insulin resistance, hyperglycemia, and changes in lipid metabolism, which enhance atherosclerotic changes and arterial stiffness. Magnesium regulates collagen and elastin turnover in the vascular wall and matrix metalloproteinase activity. Magnesium helps to protect the elastic fibers from calcium deposition and maintains the elasticity of the vessels. Considering the numerous positive effects on a number of mechanisms related to arterial hypertension, consuming a healthy diet that provides the recommended amount of magnesium can be an appropriate strategy for helping control blood pressure. Full article
(This article belongs to the Special Issue Nutrition and Cardiovascular Health) Printed Edition available
Show Figures

Figure 1

Back to TopTop