ijms-logo

Journal Browser

Journal Browser

Special Issue "Regulation of Mineral Nutrients Homeostasis and Their Crosstalk in Plants 2019"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 31 August 2020.

Special Issue Editors

Dr. Hatem Rouached
Website
Guest Editor
Biochimie et Physiologie Moleculaire des Plantes Research Unit, Montpellier SupAgro, 2, Place Pierre Viala 34060 Montpellier Cedex 2, France
Interests: plants; mineral nutrition; ions homeostasis, transport; membrane transporters, signalling; heavy metal; phytoremediation
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Mineral nutrient homeostasis is essential for plant growth and development. Recent research has demonstrated that nutrient homeostasis interaction in plants is a general rule rather than an exception. Answering the question of how plants regulate the homeostasis of these elements and how multiple mineral nutrient signals are wired to influence plant growth is a new frontier in plant nutrition. This Special Issue is focused on introducing the latest interesting findings on the regulation of mineral nutrients homeostasis and their crosstalk in various plant species. The topics of this Special Issue will include, but are not limited to:

  • What is the outcome of the combination of nutrient deficiency stresses?
  • Growth and physiological responses to water and nutrient stress.
  • Roles of nutrient sensing, signaling, and transport in regulating plant growth and development.
  • How environmental stresses modify ions signaling pathways, ions transporters expression, mineral nutrients transport and accumulation in plants.
  • How mineral nutrients homeostasis interact with each other to influence plant growth and development.
  • How use big data and systems biology approaches help to uncover the molecular basis and gene regulatory networks that govern the coordination of mineral nutrient homeostasis and plant growth.

We welcome research and review articles that will augment our understanding in this captivating field of mineral nutrient homeostasis research, which is required for devising future strategies to enhance mineral nutrition in plants and meet the challenges facing agriculture in the 21st century.

Dr. Hatem Rouached
Prof. Dr. Setsuko Komatsu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Macronutrients
  • Micronutrients
  • Water/Drought
  • Heavy metals
  • Ions transport and accumulation
  • Nutrient deficiency/excess/toxicity
  • Drought/flooding
  • Signaling crosstalk
  • Roots/ shoots growth and development
  • Tolerance/stress adaptation
  • Omics/big data
  • Genome Wide Association Studies (GWAS)
  • Gene expression
  • System Biology
  • Protein regulation
  • Stress adaptation
  • Plant physiology

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Silicon Regulates Source to Sink Metabolic Homeostasis and Promotes Growth of Rice Plants under Sulfur Deficiency
Int. J. Mol. Sci. 2020, 21(10), 3677; https://doi.org/10.3390/ijms21103677 - 23 May 2020
Abstract
Being an essential macroelement, sulfur (S) is pivotal for plant growth and development, and acute deficiency in this element leads to yield penalty. Since the last decade, strong evidence has reported the regulatory function of silicon (Si) in mitigating plant nutrient deficiency due [...] Read more.
Being an essential macroelement, sulfur (S) is pivotal for plant growth and development, and acute deficiency in this element leads to yield penalty. Since the last decade, strong evidence has reported the regulatory function of silicon (Si) in mitigating plant nutrient deficiency due to its significant diverse benefits on plant growth. However, the role of Si application in alleviating the negative impact of S deficiency is still obscure. In the present study, an attempt was undertaken to decipher the role of Si application on the metabolism of rice plants under S deficiency. The results showed a distinct transcriptomic and metabolic regulation in rice plants treated with Si under both short and long-term S deficiencies. The expression of Si transporters OsLsi1 and OsLsi2 was reduced under long-term deficiency, and the decrease was more pronounced when Si was provided. The expression of OsLsi6, which is involved in xylem loading of Si to shoots, was decreased under short-term S stress and remained unchanged in response to long-term stress. Moreover, the expression of S transporters OsSULTR tended to decrease by Si supply under short-term S deficiency but not under prolonged S stress. Si supply also reduced the level of almost all the metabolites in shoots of S-deficient plants, while it increased their level in the roots. The levels of stress-responsive hormones ABA, SA, and JA-lle were also decreased in shoots by Si application. Overall, our finding reveals the regulatory role of Si in modulating the metabolic homeostasis under S-deficient condition. Full article
Show Figures

Figure 1

Open AccessArticle
Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration
Int. J. Mol. Sci. 2019, 20(15), 3777; https://doi.org/10.3390/ijms20153777 - 02 Aug 2019
Cited by 1
Abstract
Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca [...] Read more.
Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance. Full article
Show Figures

Figure 1

Open AccessArticle
Molybdenum-Induced Effects on Nitrogen Metabolism Enzymes and Elemental Profile of Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Sources
Int. J. Mol. Sci. 2019, 20(12), 3009; https://doi.org/10.3390/ijms20123009 - 20 Jun 2019
Cited by 9
Abstract
Different nitrogen (N) sources have been reported to significantly affect the activities and expressions of N metabolism enzymes and mineral elements concentrations in crop plants. However, molybdenum-induced effects in winter wheat cultivars have still not been investigated under different N sources. Here, a [...] Read more.
Different nitrogen (N) sources have been reported to significantly affect the activities and expressions of N metabolism enzymes and mineral elements concentrations in crop plants. However, molybdenum-induced effects in winter wheat cultivars have still not been investigated under different N sources. Here, a hydroponic study was carried out to investigate these effects on two winter wheat cultivars (‘97003’ and ‘97014’) as Mo-efficient and Mo-inefficient, respectively, under different N sources (NO3, NH4NO3, and NH4+). The results revealed that the activities of nitrate reductase (NR) and nitrite reductase (NiR) followed the order of NH4NO3 > NO3 > NH4+ sources, while glutamine synthetase (GS) and glutamate synthase (GOGAT) followed the order of NH4+ > NH4NO3 > NO3 in both the wheat cultivars. However, Mo-induced effects in the activities and expressions of N metabolism enzymes under different N sources followed the order of NH4NO3 > NO3 > NH4+ sources, indicating that Mo has more complementary effects towards nitrate nutrition than the sole ammonium source in winter wheat. Interestingly, under −Mo-deprived conditions, cultivar ‘97003’ recorded more pronounced alterations in Mo-dependent parameters than ‘97014’ cultivar. Moreover, Mo application increased the proteins, amino acids, ammonium, and nitrite contents while concomitantly decreasing the nitrate contents in the same order of NH4NO3 > NO3 > NH4+ sources that coincides with the Mo-induced N enzymes activities and expressions. The findings of the present study indicated that Mo plays a key role in regulating the N metabolism enzymes and assimilatory products under all the three N sources; however, the extent of complementation exists in the order of NH4NO3 > NO3 > NH4+ sources in winter wheat. In addition, it was revealed that mineral elements profiles were mainly affected by different N sources, while Mo application generally had no significant effects on the mineral elements contents in the winter wheat leaves under different N sources. Full article
Show Figures

Figure 1

Open AccessArticle
The Ameliorative Effect of Silicon on Maize Plants Grown in Mg-Deficient Conditions
Int. J. Mol. Sci. 2019, 20(4), 969; https://doi.org/10.3390/ijms20040969 - 22 Feb 2019
Cited by 2
Abstract
The importance of magnesium (Mg) for plant growth is well-documented. Silicon (Si)-mediated alleviation of mineral deficiencies has been also reported in a number of plant species; however, there is no report on the relevance of Si nutrition in plants grown in Mg-deficient condition. [...] Read more.
The importance of magnesium (Mg) for plant growth is well-documented. Silicon (Si)-mediated alleviation of mineral deficiencies has been also reported in a number of plant species; however, there is no report on the relevance of Si nutrition in plants grown in Mg-deficient condition. Therefore, in the present work, an attempt was undertaken to study the role of Si nutrition in maize plants exposed to Mg deficiency. Plants were grown either under low (0.02 mM) or normal (0.5 mM) levels of Mg, with or without Si supplement. We have shown that Mg-deficient plants treated with Si maintained their growth and increased significantly the levels of chlorophyll and soluble sugars compared to those plants which did not receive Si. In addition, the concentrations of hexose-P, and glycolytic intermediate metabolites—mainly organic acids (isocitric and glutamic acids)—were increased in response to Si nutrition, which was associated with an increase in the levels of stress amino acids such as gamma-aminobutyric-acid (GABA), serine and glycine, as well as polyamines putrescine, which overall contributed to Mg stress tolerance. In addition, Si enhanced the levels of phytohormones cytokinin iso-pentenyladenine (IP), iso-pentenyladenine riboside (IPR), jasmonic acid (JA) and its derivate l-isoleucine (JA-ILE). The increase in cytokinin maintained the growth of Mg-deficient plants, while JA and JA-IEA were induced in response to carbohydrates accumulation. Altogether, our study reveals the vital role of Si under Mg deficiency by regulating plant primary metabolite and hormonal changes. Full article
Show Figures

Figure 1

Back to TopTop