ijms-logo

Journal Browser

Journal Browser

Host-Microbe Interaction

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: closed (30 November 2016) | Viewed by 82273

Special Issue Editor

Department of Life Sciences and PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
Interests: novel microbe discovery; microbial genomics; emerging infectious diseases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

When a microbe infects a host, the first step is mediated through its ability to attach to specific host receptors. At the same time, the host’s immune system has various ways to eliminate the microbe. Therefore, a successful microbe will have a number of mechanisms to evade from the host’s innate and/or adaptive immune responses. After the microbe is able to survive in the host, the pathogenic microbes possess additional virulence factors, such as enzymes and toxins, which enable them to cause diseases.

This Special Issue welcomes original or review articles related to any aspects on the interaction between microbes and their hosts.

Prof. Dr. Patrick C.Y. Woo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

1843 KiB  
Article
Biofilm Formation and Immunomodulatory Activity of Proteus mirabilis Clinically Isolated Strains
by Alessandra Fusco, Lorena Coretti, Vittoria Savio, Elisabetta Buommino, Francesca Lembo and Giovanna Donnarumma
Int. J. Mol. Sci. 2017, 18(2), 414; https://doi.org/10.3390/ijms18020414 - 15 Feb 2017
Cited by 37 | Viewed by 6931
Abstract
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Proteus mirabilis is characterized by several virulence factors able to promote adhesion and biofilm formation and ameliorate the colonization of urinary tract and the formation of crystalline biofilms on the [...] Read more.
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Proteus mirabilis is characterized by several virulence factors able to promote adhesion and biofilm formation and ameliorate the colonization of urinary tract and the formation of crystalline biofilms on the abiotic surface of the urinary catheters. Since, to date, the role of P. mirabilis in the etiopathogenesis of different types of urinary tract infections is not well established, in this study we sought to characterize two different clinically isolated strains of P. mirabilis (PM1 and PM2) with distinctive phenotypes and analyzed various virulence factors possibly implicated in the ability to induce UTIs and CAUTIs. In particular, we analyzed motility, biofilm formation both on abiotic and biotic surfaces of PM1 and PM2 and paralleled these parameters with the ability to induce an inflammatory response in an epithelial cell model. Results showed that PM1 displayed major motility and a capacity to form biofilm and was associated with an anti-inflammatory response of host cells. Conversely, PM2 exhibited lack motility and a had slower organization in biofilm but promoted an increase of proinflammatory cytokine expression in infected epithelial cells. Our study provides data useful to start uncovering the pathologic basis of P. mirabilis-associated urinary infections. The evidence of different virulence factors expressed by PM1 and PM2 highlights the possibility to use precise and personalized therapies targeting specific virulence pathways. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Graphical abstract

3294 KiB  
Article
Transcriptome-Based Discovery of Fusarium graminearum Stress Responses to FgHV1 Infection
by Shuangchao Wang, Jingze Zhang, Pengfei Li, Dewen Qiu and Lihua Guo
Int. J. Mol. Sci. 2016, 17(11), 1922; https://doi.org/10.3390/ijms17111922 - 17 Nov 2016
Cited by 14 | Viewed by 4751
Abstract
Fusarium graminearum hypovirus 1 (FgHV1), which is phylogenetically related to Cryphonectria hypovirus 1 (CHV1), is a virus in the family Hypoviridae that infects the plant pathogenic fungus F. graminearum. Although hypovirus FgHV1 infection does not attenuate the virulence of the host (hypovirulence), [...] Read more.
Fusarium graminearum hypovirus 1 (FgHV1), which is phylogenetically related to Cryphonectria hypovirus 1 (CHV1), is a virus in the family Hypoviridae that infects the plant pathogenic fungus F. graminearum. Although hypovirus FgHV1 infection does not attenuate the virulence of the host (hypovirulence), it results in defects in mycelial growth and spore production. We now report that the vertical transmission rate of FgHV1 through asexual spores reached 100%. Using RNA deep sequencing, we performed genome-wide expression analysis to reveal phenotype-related genes with expression changes in response to FgHV1 infection. A total of 378 genes were differentially expressed, suggesting that hypovirus infection causes a significant alteration of fungal gene expression. Nearly two times as many genes were up-regulated as were down-regulated. A differentially expressed gene enrichment analysis identified a number of important pathways. Metabolic processes, the ubiquitination system, and especially cellular redox regulation were the most affected categories in F. graminearum challenged with FgHV1. The p20, encoded by FgHV1 could induce H2O2 accumulation and hypersensitive response in Nicotiana benthamiana leaves. Moreover, hypovirus FgHV1 may regulate transcription factors and trigger the RNA silencing pathway in F. graminearum. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Graphical abstract

1515 KiB  
Article
Susceptibility and Immune Defence Mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against Entomopathogenic Fungal Infections
by Abid Hussain, Muhammad Rizwan-ul-Haq, Hassan Al-Ayedh and Ahmed Mohammed AlJabr
Int. J. Mol. Sci. 2016, 17(9), 1518; https://doi.org/10.3390/ijms17091518 - 09 Sep 2016
Cited by 33 | Viewed by 5464
Abstract
Insects infected with entomopathogenic fungi, experience physiological changes that influence their growth and immune defence. The potential of nine isolates of entomopathogenic fungi was evaluated after determining percent germination and relative conidial hydrophobicity. However, nutritional indices were evaluated after immersing eighth-instar Rhynchophorus ferrugineus [...] Read more.
Insects infected with entomopathogenic fungi, experience physiological changes that influence their growth and immune defence. The potential of nine isolates of entomopathogenic fungi was evaluated after determining percent germination and relative conidial hydrophobicity. However, nutritional indices were evaluated after immersing eighth-instar Rhynchophorus ferrugineus larvae into each isolate suspension (1 × 107 conidia/mL). The results showed that isolates B6884 and M9374 had 44.51% and 39.02% higher conidial hydrophobicity compared with isolate I03011 (least virulent). The results of nutritional index assays revealed a significant reduction in growth indices after infection with different isolates. Compared with control, B6884 and M9374 greatly decreased larval growth by reducing the efficacy of conversion of ingested food (36%–47%) and Efficacy of conversion of digested food (50%–63%). Furthermore, only isolate B6884 induced 100% mortality within 12 days. Compared with control, isolate I03011, possessing the lowest conidial hydrophobicity, only reduced 0.29% of the efficacy of conversion of ingested food (ECI) and 0.48% of the efficacy of conversion of digested food (ECD). Similarly, transcriptomic analysis of genes related to the Red palm weevil (RPW) immune response, including pathogen recognition receptors (C-type lectin and endo-beta-1,4-glucanse), signal modulator (Serine protease-like protein), signal transductors (Calmodulin-like protein and EF-hand domain containing protein) and effectors (C-type lysozyme, Cathepsin L., Defensin-like protein, Serine carboxypeptidase, and Thaumatin-like protein), was significantly increased in larval samples infected with B6884 and M9374. These results suggest that for an isolate to be virulent, conidial hydrophobicity and germination should also be considered during pathogen selection, as these factors could significantly impact host growth and immune defence mechanisms. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Graphical abstract

1773 KiB  
Article
De Novo Transcriptome Analysis of Differential Functional Gene Expression in Largemouth Bass (Micropterus salmoides) after Challenge with Nocardia seriolae
by Omkar Byadgi, Chi-Wen Chen, Pei-Chyi Wang, Ming-An Tsai and Shih-Chu Chen
Int. J. Mol. Sci. 2016, 17(8), 1315; https://doi.org/10.3390/ijms17081315 - 11 Aug 2016
Cited by 53 | Viewed by 6987
Abstract
Largemouth bass (Micropterus salmoides) are common hosts of an epizootic bacterial infection by Nocardia seriolae. We conducted transcriptome profiling of M. salmoides to understand the host immune response to N. seriolae infection, using the Illumina sequencing platform. De novo assembly [...] Read more.
Largemouth bass (Micropterus salmoides) are common hosts of an epizootic bacterial infection by Nocardia seriolae. We conducted transcriptome profiling of M. salmoides to understand the host immune response to N. seriolae infection, using the Illumina sequencing platform. De novo assembly of paired-end reads yielded 47,881 unigenes, the total length, average length, N50, and GC content of which were 49,734,288, 1038, 1983 bp, and 45.94%, respectively. Annotation was performed by comparison against non-redundant protein sequence (NR), non-redundant nucleotide (NT), Swiss-Prot, Clusters of Orthologous Groups (COG), Kyoto Encyclopaedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Interpro databases, yielding 28,964 (NR: 60.49%), 36,686 (NT: 76.62%), 24,830 (Swissprot: 51.86%), 8913 (COG: 18.61%), 20,329 (KEGG: 42.46%), 835 (GO: 1.74%), and 22,194 (Interpro: 46.35%) unigenes. Additionally, 8913 unigenes were classified into 25 Clusters of Orthologous Groups (KOGs) categories, and 20,329 unigenes were assigned to 244 specific signalling pathways. RNA-Seq by Expectation Maximization (RSEM) and PossionDis were used to determine significantly differentially expressed genes (False Discovery Rate (FDR) < 0.05) and we found that 1384 were upregulated genes and 1542 were downregulated genes, and further confirmed their regulations using reverse transcription quantitative PCR (RT-qPCR). Altogether, these results provide information on immune mechanisms induced during bacterial infection in largemouth bass, which may facilitate the prevention of nocardiosis. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Graphical abstract

437 KiB  
Article
Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection
by Michael H. Kogut, Christina L. Swaggerty, James Allen Byrd, Ramesh Selvaraj and Ryan J. Arsenault
Int. J. Mol. Sci. 2016, 17(8), 1207; https://doi.org/10.3390/ijms17081207 - 27 Jul 2016
Cited by 34 | Viewed by 6397
Abstract
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that [...] Read more.
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4–14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Figure 1

3577 KiB  
Article
Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23
by Patrick C. Y. Woo, Susanna K. P. Lau, Rachel Y. Y. Fan, Candy C. Y. Lau, Emily Y. M. Wong, Sunitha Joseph, Alan K. L. Tsang, Renate Wernery, Cyril C. Y. Yip, Chi-Ching Tsang, Ulrich Wernery and Kwok-Yung Yuen
Int. J. Mol. Sci. 2016, 17(5), 691; https://doi.org/10.3390/ijms17050691 - 07 May 2016
Cited by 22 | Viewed by 6708
Abstract
Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five [...] Read more.
Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Figure 1

2072 KiB  
Article
Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts
by Gamal Wareth, Murat Eravci, Christoph Weise, Uwe Roesler, Falk Melzer, Lisa D. Sprague, Heinrich Neubauer and Jayaseelan Murugaiyan
Int. J. Mol. Sci. 2016, 17(5), 659; https://doi.org/10.3390/ijms17050659 - 30 Apr 2016
Cited by 22 | Viewed by 6777
Abstract
Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B. [...] Read more.
Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B.) species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Graphical abstract

Review

Jump to: Research

464 KiB  
Review
The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host
by Qi Hui Sam, Matthew Wook Chang and Louis Yi Ann Chai
Int. J. Mol. Sci. 2017, 18(2), 330; https://doi.org/10.3390/ijms18020330 - 04 Feb 2017
Cited by 145 | Viewed by 13924
Abstract
The advent of sequencing technology has endowed us with the capacity to study microbes constituting the human commensal community that were previously non-culturable. Much of the initial works have concentrated on the bacterial flora constituting the gut microbiome, since specimens are readily accessible [...] Read more.
The advent of sequencing technology has endowed us with the capacity to study microbes constituting the human commensal community that were previously non-culturable. Much of the initial works have concentrated on the bacterial flora constituting the gut microbiome, since specimens are readily accessible in health and disease. Less, however, is understood of the “silent population”—the fungal species, also known as the mycobiome. Living in symbiosis with bacteria as commensals in our body, it is perceivable that the mycobiome exerts an inadvertent influence on the microbiome. We review here the recent knowledge gained from study of the interaction between the mycobiome and microbiome in health and disease susceptibility, immunity, and consequences from antimicrobial treatment. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Graphical abstract

1469 KiB  
Review
Infectious Bursal Disease Virus-Host Interactions: Multifunctional Viral Proteins that Perform Multiple and Differing Jobs
by Yao Qin and Shijun J. Zheng
Int. J. Mol. Sci. 2017, 18(1), 161; https://doi.org/10.3390/ijms18010161 - 14 Jan 2017
Cited by 52 | Viewed by 9225
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease caused by IBD virus (IBDV). The consequent immunosuppression increases susceptibility to other infectious diseases and the risk of subsequent vaccination failure as well. Since the genome of IBDV is relatively [...] Read more.
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease caused by IBD virus (IBDV). The consequent immunosuppression increases susceptibility to other infectious diseases and the risk of subsequent vaccination failure as well. Since the genome of IBDV is relatively small, it has a limited number of proteins inhibiting the cellular antiviral responses and acting as destroyers to the host defense system. Thus, these virulence factors must be multifunctional in order to complete the viral replication cycle in a host cell. Insights into the roles of these viral proteins along with their multiple cellular targets in different pathways will give rise to a rational design for safer and effective vaccines. Here we summarize the recent findings that focus on the virus–cell interactions during IBDV infection at the protein level. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Figure 1

1151 KiB  
Review
Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus
by Yanmei Ma, Jing Ouyang, Jingyun Wei, Mohamed Maarouf and Ji-Long Chen
Int. J. Mol. Sci. 2017, 18(1), 39; https://doi.org/10.3390/ijms18010039 - 27 Dec 2016
Cited by 43 | Viewed by 7778
Abstract
Non-coding RNAs (ncRNAs) are a new type of regulators that play important roles in various cellular processes, including cell growth, differentiation, survival, and apoptosis. ncRNAs, including small non-coding RNAs (e.g., microRNAs, small interfering RNAs) and long non-coding RNAs (lncRNAs), are pervasively transcribed in [...] Read more.
Non-coding RNAs (ncRNAs) are a new type of regulators that play important roles in various cellular processes, including cell growth, differentiation, survival, and apoptosis. ncRNAs, including small non-coding RNAs (e.g., microRNAs, small interfering RNAs) and long non-coding RNAs (lncRNAs), are pervasively transcribed in human and mammalian cells. Recently, it has been recognized that these ncRNAs are critically implicated in the virus–host interaction as key regulators of transcription or post-transcription during viral infection. Influenza A virus (IAV) is still a major threat to human health. Hundreds of ncRNAs are differentially expressed in response to infection with IAV, such as infection by pandemic H1N1 and highly pathogenic avian strains. There is increasing evidence demonstrating functional involvement of these regulatory microRNAs, vault RNAs (vtRNAs) and lncRNAs in pathogenesis of influenza virus, including a variety of host immune responses. For example, it has been shown that ncRNAs regulate activation of pattern recognition receptor (PRR)-associated signaling and transcription factors (nuclear factor κ-light-chain-enhancer of activated B cells, NF-κB), as well as production of interferons (IFNs) and cytokines, and expression of critical IFN-stimulated genes (ISGs). The vital functions of IAV-regulated ncRNAs either to against defend viral invasion or to promote progeny viron production are summarized in this review. In addition, we also highlight the potentials of ncRNAs as therapeutic targets and diagnostic biomarkers. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Show Figures

Figure 1

264 KiB  
Review
Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host–Pathogen Interaction: A Review
by Voon Kin Chin, Tze Yan Lee, Basir Rusliza and Pei Pei Chong
Int. J. Mol. Sci. 2016, 17(10), 1643; https://doi.org/10.3390/ijms17101643 - 18 Oct 2016
Cited by 55 | Viewed by 6570
Abstract
Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can [...] Read more.
Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida–host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future. Full article
(This article belongs to the Special Issue Host-Microbe Interaction)
Back to TopTop