ijms-logo

Journal Browser

Journal Browser

Chloroplast

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (18 June 2018) | Viewed by 166363

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

Department of Life Sciences (Ciencias de la Vida), University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
Interests: genetic machinery of chloroplasts; molecular mechanisms of plant senescence; molecular mechanisms of stress responses; organism entropy; regulation of photosynthetic electron transport
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Chloroplasts are at the front line of many molecular biology advances, ranging from evolutionary biology to the mechanism of energy transduction, and also includes stress responses and programmed leaf death. In addition to the relevance of basic knowledge, advances are unveiling promising insights to improve plant productivity, disease resistance, and environmental control. The production of secondary metabolites and proteins by transformed chloroplasts add further excitement to applied investigations on chloroplasts.

Papers submitted to this Special Issue must report high novelty results and/or plausible and testable new models. The molecular basis of the conversion of light to chemical energy in photosystems is a reference topic. In addition, the structure and function of other components of the photosynthesis machinery, plastid genomic, plastid biogenesis and senescence, metabolism, reactive oxygen species and membrane transport are also of interest, with a special emphasis on the gene level and evolutionary comparisons. Significant advances on chloroplast transformation are also welcome.

Prof. Dr. Bartolome Sabater
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electron transport
  • endosymbiosis
  • photosynthesis
  • photosystems
  • plants
  • plastid DNA
  • reactive oxygen species (ROS)
  • thylakoid

Related Special Issue

Published Papers (30 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

5 pages, 193 KiB  
Editorial
Evolution and Function of the Chloroplast. Current Investigations and Perspectives
by Bartolomé Sabater
Int. J. Mol. Sci. 2018, 19(10), 3095; https://doi.org/10.3390/ijms19103095 - 10 Oct 2018
Cited by 18 | Viewed by 3269
Abstract
Chloroplasts are the place for the major conversion of the sun’s radiation energy to chemical energy
that is usable by organisms[…] Full article
(This article belongs to the Special Issue Chloroplast)

Research

Jump to: Editorial, Review, Other

16 pages, 2173 KiB  
Article
Nitric Oxide Enhancing Resistance to PEG-Induced Water Deficiency is Associated with the Primary Photosynthesis Reaction in Triticum aestivum L.
by Ruixin Shao, Huifang Zheng, Shuangjie Jia, Yanping Jiang, Qinghua Yang and Guozhang Kang
Int. J. Mol. Sci. 2018, 19(9), 2819; https://doi.org/10.3390/ijms19092819 - 18 Sep 2018
Cited by 13 | Viewed by 4124
Abstract
Photosynthesis is affected by water-deficiency (WD) stress, and nitric oxide (NO) is a free radical that participates in the photosynthesis process. Previous studies have suggested that NO regulates excitation-energy distribution of photosynthesis under WD stress. Here, quantitative phosphoproteomic profiling was conducted using iTRAQ. [...] Read more.
Photosynthesis is affected by water-deficiency (WD) stress, and nitric oxide (NO) is a free radical that participates in the photosynthesis process. Previous studies have suggested that NO regulates excitation-energy distribution of photosynthesis under WD stress. Here, quantitative phosphoproteomic profiling was conducted using iTRAQ. Differentially phosphorylated protein species (DEPs) were identified in leaves of NO- or polyethylene glycol (PEG)-treated wheat seedlings (D), and in control seedlings. From 1396 unique phosphoproteins, 2257 unique phosphorylated peptides and 2416 phosphorylation sites were identified. Of these, 96 DEPs displayed significant changes (≥1.50-fold, p < 0.01). These DEPs are involved in photosynthesis, signal transduction, etc. Furthermore, phosphorylation of several DEPs was upregulated by both D and NO treatments, but downregulated only in NO treatment. These differences affected the chlorophyll A–B binding protein, chloroplast post-illumination chlorophyll-fluorescence-increase protein, and SNT7, implying that NO indirectly regulated the absorption and transport of light energy in photosynthesis in response to WD stress. The significant difference of chlorophyll (Chl) content, Chl a fluorescence-transient, photosynthesis index, and trapping and transport of light energy further indicated that exogenous NO under D stress enhanced the primary photosynthesis reaction compared to D treatment. A putative pathway is proposed to elucidate NO regulation of the primary reaction of photosynthesis under WD. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

17 pages, 5580 KiB  
Article
Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus acutissima
by Xuan Li, Yongfu Li, Mingyue Zang, Mingzhi Li and Yanming Fang
Int. J. Mol. Sci. 2018, 19(8), 2443; https://doi.org/10.3390/ijms19082443 - 18 Aug 2018
Cited by 72 | Viewed by 7345
Abstract
Quercus acutissima, an important endemic and ecological plant of the Quercus genus, is widely distributed throughout China. However, there have been few studies on its chloroplast genome. In this study, the complete chloroplast (cp) genome of Q. acutissima was sequenced, analyzed, and [...] Read more.
Quercus acutissima, an important endemic and ecological plant of the Quercus genus, is widely distributed throughout China. However, there have been few studies on its chloroplast genome. In this study, the complete chloroplast (cp) genome of Q. acutissima was sequenced, analyzed, and compared to four species in the Fagaceae family. The size of the Q. acutissima chloroplast genome is 161,124 bp, including one large single copy (LSC) region of 90,423 bp and one small single copy (SSC) region of 19,068 bp, separated by two inverted repeat (IR) regions of 51,632 bp. The GC content of the whole genome is 36.08%, while those of LSC, SSC, and IR are 34.62%, 30.84%, and 42.78%, respectively. The Q. acutissima chloroplast genome encodes 136 genes, including 88 protein-coding genes, four ribosomal RNA genes, and 40 transfer RNA genes. In the repeat structure analysis, 31 forward and 22 inverted long repeats and 65 simple-sequence repeat loci were detected in the Q. acutissima cp genome. The existence of abundant simple-sequence repeat loci in the genome suggests the potential for future population genetic work. The genome comparison revealed that the LSC region is more divergent than the SSC and IR regions, and there is higher divergence in noncoding regions than in coding regions. The phylogenetic relationships of 25 species inferred that members of the Quercus genus do not form a clade and that Q. acutissima is closely related to Q. variabilis. This study identified the unique characteristics of the Q. acutissima cp genome, which will provide a theoretical basis for species identification and biological research. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

16 pages, 6288 KiB  
Article
Phylogenomic and Comparative Analyses of Complete Plastomes of Croomia and Stemona (Stemonaceae)
by Qixiang Lu, Wenqing Ye, Ruisen Lu, Wuqin Xu and Yingxiong Qiu
Int. J. Mol. Sci. 2018, 19(8), 2383; https://doi.org/10.3390/ijms19082383 - 13 Aug 2018
Cited by 30 | Viewed by 3971
Abstract
The monocot genus Croomia (Stemonaceae) comprises three herbaceous perennial species that exhibit EA (Eastern Asian)–ENA (Eastern North American) disjunct distribution. However, due to the lack of effective genomic resources, its evolutionary history is still weakly resolved. In the present study, we conducted comparative [...] Read more.
The monocot genus Croomia (Stemonaceae) comprises three herbaceous perennial species that exhibit EA (Eastern Asian)–ENA (Eastern North American) disjunct distribution. However, due to the lack of effective genomic resources, its evolutionary history is still weakly resolved. In the present study, we conducted comparative analysis of the complete chloroplast (cp) genomes of three Croomia species and two Stemona species. These five cp genomes proved highly similar in overall size (154,407–155,261 bp), structure, gene order and content. All five cp genomes contained the same 114 unique genes consisting of 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Gene content, gene order, AT content and IR/SC boundary structures were almost the same among the five Stemonaceae cp genomes, except that the Stemona cp genome was found to contain an inversion in cemA and petA. The lengths of five genomes varied due to contraction/expansion of the IR/SC borders. A/T mononucleotides were the richest Simple Sequence Repeats (SSRs). A total of 46, 48, 47, 61 and 60 repeats were identified in C. japonica, C. heterosepala, C. pauciflora, S. japonica and S. mairei, respectively. A comparison of pairwise sequence divergence values across all introns and intergenic spacers revealed that the ndhF–rpl32, psbM–trnD and trnS–trnG regions are the fastest-evolving regions. These regions are therefore likely to be the best choices for molecular evolutionary and systematic studies at low taxonomic levels in Stemonaceae. Phylogenetic analyses of the complete cp genomes and 78 protein-coding genes strongly supported the monophyly of Croomia. Two Asian species were identified as sisters that likely diverged in the Early Pleistocene (1.62 Mya, 95% HPD: 1.125–2.251 Mya), whereas the divergence of C. pauciflora dated back to the Late Miocene (4.77 Mya, 95% HPD: 3.626–6.162 Mya). The availability of these cp genomes will provide valuable genetic resources for further population genetics and phylogeographic studies on Croomia. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

15 pages, 12605 KiB  
Article
Comparative Chloroplast Genome Analyses of Species in Gentiana section Cruciata (Gentianaceae) and the Development of Authentication Markers
by Tao Zhou, Jian Wang, Yun Jia, Wenli Li, Fusheng Xu and Xumei Wang
Int. J. Mol. Sci. 2018, 19(7), 1962; https://doi.org/10.3390/ijms19071962 - 05 Jul 2018
Cited by 59 | Viewed by 4713
Abstract
Gentiana section Cruciata is widely distributed across Eurasia at high altitudes, and some species in this section are used as traditional Chinese medicine. Accurate identification of these species is important for their utilization and conservation. Due to similar morphological and chemical characteristics, correct [...] Read more.
Gentiana section Cruciata is widely distributed across Eurasia at high altitudes, and some species in this section are used as traditional Chinese medicine. Accurate identification of these species is important for their utilization and conservation. Due to similar morphological and chemical characteristics, correct discrimination of these species still remains problematic. Here, we sequenced three complete chloroplast (cp) genomes (G. dahurica, G. siphonantha and G. officinalis). We further compared them with the previously published plastomes from sect. Cruciata and developed highly polymorphic molecular markers for species authentication. The eight cp genomes shared the highly conserved structure and contained 112 unique genes arranged in the same order, including 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. We analyzed the repeats and nucleotide substitutions in these plastomes and detected several highly variable regions. We found that four genes (accD, clpP, matK and ycf1) were subject to positive selection, and sixteen InDel-variable loci with high discriminatory powers were selected as candidate barcodes. Our phylogenetic analyses based on plastomes further confirmed the monophyly of sect. Cruciata and primarily elucidated the phylogeny of Gentianales. This study indicated that cp genomes can provide more integrated information for better elucidating the phylogenetic pattern and improving discriminatory power during species authentication. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

20 pages, 4877 KiB  
Article
Comparative Analysis of the Chloroplast Genomes of the Chinese Endemic Genus Urophysa and Their Contribution to Chloroplast Phylogeny and Adaptive Evolution
by Deng-Feng Xie, Yan Yu, Yi-Qi Deng, Juan Li, Hai-Ying Liu, Song-Dong Zhou and Xing-Jin He
Int. J. Mol. Sci. 2018, 19(7), 1847; https://doi.org/10.3390/ijms19071847 - 22 Jun 2018
Cited by 74 | Viewed by 5037
Abstract
Urophysa is a Chinese endemic genus comprising two species, Urophysa rockii and Urophysa henryi. In this study, we sequenced the complete chloroplast (cp) genomes of these two species and of their relative Semiquilegia adoxoides. Illumina sequencing technology was used to compare [...] Read more.
Urophysa is a Chinese endemic genus comprising two species, Urophysa rockii and Urophysa henryi. In this study, we sequenced the complete chloroplast (cp) genomes of these two species and of their relative Semiquilegia adoxoides. Illumina sequencing technology was used to compare sequences, elucidate the intra- and interspecies variations, and infer the phylogeny relationship with other Ranunculaceae family species. A typical quadripartite structure was detected, with a genome size from 158,473 to 158,512 bp, consisting of a pair of inverted repeats separated by a small single-copy region and a large single-copy region. We analyzed the nucleotide diversity and repeated sequences components and conducted a positive selection analysis by the codon-based substitution on single-copy coding sequence (CDS). Seven regions were found to possess relatively high nucleotide diversity, and numerous variable repeats and simple sequence repeats (SSR) markers were detected. Six single-copy genes (atpA, rpl20, psaA, atpB, ndhI, and rbcL) resulted to have high posterior probabilities of codon sites in the positive selection analysis, which means that the six genes may be under a great selection pressure. The visualization results of the six genes showed that the amino acid properties across each column of all species are variable in different genera. All these regions with high nucleotide diversity, abundant repeats, and under positive selection will provide potential plastid markers for further taxonomic, phylogenetic, and population genetics studies in Urophysa and its relatives. Phylogenetic analyses based on the 79 single-copy genes, the whole complete genome sequences, and all CDS sequences showed same topologies with high support, and U. rockii was closely clustered with U. henryi within the Urophysa genus, with S. adoxoides as their closest relative. Therefore, the complete cp genomes in Urophysa species provide interesting insights and valuable information that can be used to identify related species and reconstruct their phylogeny. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

26 pages, 4657 KiB  
Article
Candidate Genes for Yellow Leaf Color in Common Wheat (Triticum aestivum L.) and Major Related Metabolic Pathways according to Transcriptome Profiling
by Huiyu Wu, Narong Shi, Xuyao An, Cong Liu, Hongfei Fu, Li Cao, Yi Feng, Daojie Sun and Lingli Zhang
Int. J. Mol. Sci. 2018, 19(6), 1594; https://doi.org/10.3390/ijms19061594 - 29 May 2018
Cited by 64 | Viewed by 6218
Abstract
The photosynthetic capacity and efficiency of a crop depends on the biosynthesis of photosynthetic pigments and chloroplast development. However, little is known about the molecular mechanisms of chloroplast development and chlorophyll (Chl) biosynthesis in common wheat because of its huge and complex genome. [...] Read more.
The photosynthetic capacity and efficiency of a crop depends on the biosynthesis of photosynthetic pigments and chloroplast development. However, little is known about the molecular mechanisms of chloroplast development and chlorophyll (Chl) biosynthesis in common wheat because of its huge and complex genome. Ygm, a spontaneous yellow-green leaf color mutant of winter wheat, exhibits reduced Chl contents and abnormal chloroplast development. Thus, we searched for candidate genes associated with this phenotype. Comparative transcriptome profiling was performed using leaves from the yellow leaf color type (Y) and normal green color type (G) of the Ygm mutant progeny. We identified 1227 differentially expressed genes (DEGs) in Y compared with G (i.e., 689 upregulated genes and 538 downregulated genes). Gene ontology and pathway enrichment analyses indicated that the DEGs were involved in Chl biosynthesis (i.e., magnesium chelatase subunit H (CHLH) and protochlorophyllide oxidoreductase (POR) genes), carotenoid biosynthesis (i.e., β-carotene hydroxylase (BCH) genes), photosynthesis, and carbon fixation in photosynthetic organisms. We also identified heat shock protein (HSP) genes (sHSP, HSP70, HSP90, and DnaJ) and heat shock transcription factor genes that might have vital roles in chloroplast development. Quantitative RT-PCR analysis of the relevant DEGs confirmed the RNA-Seq results. Moreover, measurements of seven intermediate products involved in Chl biosynthesis and five carotenoid compounds involved in carotenoid-xanthophyll biosynthesis confirmed that CHLH and BCH are vital enzymes for the unusual leaf color phenotype in Y type. These results provide insights into leaf color variation in wheat at the transcriptional level. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

17 pages, 2782 KiB  
Article
Sequencing, Characterization, and Comparative Analyses of the Plastome of Caragana rosea var. rosea
by Mei Jiang, Haimei Chen, Shuaibing He, Liqiang Wang, Amanda Juan Chen and Chang Liu
Int. J. Mol. Sci. 2018, 19(5), 1419; https://doi.org/10.3390/ijms19051419 - 09 May 2018
Cited by 28 | Viewed by 4103
Abstract
To exploit the drought-resistant Caragana species, we performed a comparative study of the plastomes from four species: Caragana rosea, C. microphylla, C. kozlowii, and C. Korshinskii. The complete plastome sequence of the C. rosea was obtained using the next [...] Read more.
To exploit the drought-resistant Caragana species, we performed a comparative study of the plastomes from four species: Caragana rosea, C. microphylla, C. kozlowii, and C. Korshinskii. The complete plastome sequence of the C. rosea was obtained using the next generation DNA sequencing technology. The genome is a circular structure of 133,122 bases and it lacks inverted repeat. It contains 111 unique genes, including 76 protein-coding, 30 tRNA, and four rRNA genes. Repeat analyses obtained 239, 244, 258, and 246 simple sequence repeats in C. rosea, C. microphylla, C. kozlowii, and C. korshinskii, respectively. Analyses of sequence divergence found two intergenic regions: trnI-CAU-ycf2 and trnN-GUU-ycf1, exhibiting a high degree of variations. Phylogenetic analyses showed that the four Caragana species belong to a monophyletic clade. Analyses of Ka/Ks ratios revealed that five genes: rpl16, rpl20, rps11, rps7, and ycf1 and several sites having undergone strong positive selection in the Caragana branch. The results lay the foundation for the development of molecular markers and the understanding of the evolutionary process for drought-resistant characteristics. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

17 pages, 4502 KiB  
Article
Complete Chloroplast Genome of Cercis chuniana (Fabaceae) with Structural and Genetic Comparison to Six Species in Caesalpinioideae
by Wanzhen Liu, Hanghui Kong, Juan Zhou, Peter W. Fritsch, Gang Hao and Wei Gong
Int. J. Mol. Sci. 2018, 19(5), 1286; https://doi.org/10.3390/ijms19051286 - 25 Apr 2018
Cited by 33 | Viewed by 4937
Abstract
The subfamily Caesalpinioideae of the Fabaceae has long been recognized as non-monophyletic due to its controversial phylogenetic relationships. Cercis chuniana, endemic to China, is a representative species of Cercis L. placed within Caesalpinioideae in the older sense. Here, we report the whole [...] Read more.
The subfamily Caesalpinioideae of the Fabaceae has long been recognized as non-monophyletic due to its controversial phylogenetic relationships. Cercis chuniana, endemic to China, is a representative species of Cercis L. placed within Caesalpinioideae in the older sense. Here, we report the whole chloroplast (cp) genome of C. chuniana and compare it to six other species from the Caesalpinioideae. Comparative analyses of gene synteny and simple sequence repeats (SSRs), as well as estimation of nucleotide diversity, the relative ratios of synonymous and nonsynonymous substitutions (dn/ds), and Kimura 2-parameter (K2P) interspecific genetic distances, were all conducted. The whole cp genome of C. chuniana was found to be 158,433 bp long with a total of 114 genes, 81 of which code for proteins. Nucleotide substitutions and length variation are present, particularly at the boundaries among large single copy (LSC), inverted repeat (IR) and small single copy (SSC) regions. Nucleotide diversity among all species was estimated to be 0.03, the average dn/ds ratio 0.3177, and the average K2P value 0.0372. Ninety-one SSRs were identified in C. chuniana, with the highest proportion in the LSC region. Ninety-seven species from the old Caesalpinioideae were selected for phylogenetic reconstruction, the analysis of which strongly supports the monophyly of Cercidoideae based on the new classification of the Fabaceae. Our study provides genomic information for further phylogenetic reconstruction and biogeographic inference of Cercis and other legume species. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

16 pages, 6591 KiB  
Article
Comparative Plastid Genomes of Primula Species: Sequence Divergence and Phylogenetic Relationships
by Ting Ren, Yanci Yang, Tao Zhou and Zhan-Lin Liu
Int. J. Mol. Sci. 2018, 19(4), 1050; https://doi.org/10.3390/ijms19041050 - 01 Apr 2018
Cited by 45 | Viewed by 5105
Abstract
Compared to traditional DNA markers, genome-scale datasets can provide mass information to effectively address historically difficult phylogenies. Primula is the largest genus in the family Primulaceae, with members distributed mainly throughout temperate and arctic areas of the Northern Hemisphere. The phylogenetic relationships among [...] Read more.
Compared to traditional DNA markers, genome-scale datasets can provide mass information to effectively address historically difficult phylogenies. Primula is the largest genus in the family Primulaceae, with members distributed mainly throughout temperate and arctic areas of the Northern Hemisphere. The phylogenetic relationships among Primula taxa still maintain unresolved, mainly due to intra- and interspecific morphological variation, which was caused by frequent hybridization and introgression. In this study, we sequenced and assembled four complete plastid genomes (Primula handeliana, Primula woodwardii, Primula knuthiana, and Androsace laxa) by Illumina paired-end sequencing. A total of 10 Primula species (including 7 published plastid genomes) were analyzed to investigate the plastid genome sequence divergence and their inferences for the phylogeny of Primula. The 10 Primula plastid genomes were similar in terms of their gene content and order, GC content, and codon usage, but slightly different in the number of the repeat. Moderate sequence divergence was observed among Primula plastid genomes. Phylogenetic analysis strongly supported that Primula was monophyletic and more closely related to Androsace in the Primulaceae family. The phylogenetic relationships among the 10 Primula species showed that the placement of P. knuthiana–P. veris clade was uncertain in the phylogenetic tree. This study indicated that plastid genome data were highly effective to investigate the phylogeny. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

15 pages, 22427 KiB  
Article
Different Natural Selection Pressures on the atpF Gene in Evergreen Sclerophyllous and Deciduous Oak Species: Evidence from Comparative Analysis of the Complete Chloroplast Genome of Quercus aquifolioides with Other Oak Species
by Kangquan Yin, Yue Zhang, Yuejuan Li and Fang K. Du
Int. J. Mol. Sci. 2018, 19(4), 1042; https://doi.org/10.3390/ijms19041042 - 30 Mar 2018
Cited by 37 | Viewed by 5198
Abstract
Quercus is an economically important and phylogenetically complex genus in the family Fagaceae. Due to extensive hybridization and introgression, it is considered to be one of the most challenging plant taxa, both taxonomically and phylogenetically. Quercus aquifolioides is an evergreen sclerophyllous oak species [...] Read more.
Quercus is an economically important and phylogenetically complex genus in the family Fagaceae. Due to extensive hybridization and introgression, it is considered to be one of the most challenging plant taxa, both taxonomically and phylogenetically. Quercus aquifolioides is an evergreen sclerophyllous oak species that is endemic to, but widely distributed across, the Hengduanshan Biodiversity Hotspot in the Eastern Himalayas. Here, we compared the fully assembled chloroplast (cp) genome of Q. aquifolioides with those of three closely related species. The analysis revealed a cp genome ranging in size from 160,415 to 161,304 bp and with a typical quadripartite structure, composed of two inverted repeats (IRs) separated by a small single copy (SSC) and a large single copy (LSC) region. The genome organization, gene number, gene order, and GC content of these four Quercus cp genomes are similar to those of many angiosperm cp genomes. We also analyzed the Q. aquifolioides repeats and microsatellites. Investigating the effects of selection events on shared protein-coding genes using the Ka/Ks ratio showed that significant positive selection had acted on the atpF gene of Q. aquifolioides compared to two deciduous oak species, and that there had been significant purifying selection on the atpF gene in the chloroplast of evergreen sclerophyllous oak trees. In addition, site-specific selection analysis identified positively selected sites in 12 genes. Phylogenetic analysis based on shared protein-coding genes from 14 species defined Q. aquifolioides as belonging to sect. Heterobalanus and being closely related to Q. rubra and Q. aliena. Our findings provide valuable genetic information for use in accurately identifying species, resolving taxonomy, and reconstructing the phylogeny of the genus Quercus. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

16 pages, 4201 KiB  
Article
Whole-Genome Comparison Reveals Heterogeneous Divergence and Mutation Hotspots in Chloroplast Genome of Eucommia ulmoides Oliver
by Wencai Wang, Siyun Chen and Xianzhi Zhang
Int. J. Mol. Sci. 2018, 19(4), 1037; https://doi.org/10.3390/ijms19041037 - 30 Mar 2018
Cited by 29 | Viewed by 4670
Abstract
Eucommia ulmoides (E. ulmoides), the sole species of Eucommiaceae with high importance of medicinal and industrial values, is a Tertiary relic plant that is endemic to China. However, the population genetics study of E. ulmoides lags far behind largely due to [...] Read more.
Eucommia ulmoides (E. ulmoides), the sole species of Eucommiaceae with high importance of medicinal and industrial values, is a Tertiary relic plant that is endemic to China. However, the population genetics study of E. ulmoides lags far behind largely due to the scarcity of genomic data. In this study, one complete chloroplast (cp) genome of E. ulmoides was generated via the genome skimming approach and compared to another available E. ulmoides cp genome comprehensively at the genome scale. We found that the structure of the cp genome in E. ulmoides was highly consistent with genome size variation which might result from DNA repeat variations in the two E. ulmoides cp genomes. Heterogeneous sequence divergence patterns were revealed in different regions of the E. ulmoides cp genomes, with most (59 out of 75) of the detected SNPs (single nucleotide polymorphisms) located in the gene regions, whereas most (50 out of 80) of the indels (insertions/deletions) were distributed in the intergenic spacers. In addition, we also found that all the 40 putative coding-region-located SNPs were synonymous mutations. A total of 71 polymorphic cpDNA fragments were further identified, among which 20 loci were selected as potential molecular markers for subsequent population genetics studies of E. ulmoides. Moreover, eight polymorphic cpSSR loci were also developed. The sister relationship between E. ulmoides and Aucuba japonica in Garryales was also confirmed based on the cp phylogenomic analyses. Overall, this study will shed new light on the conservation genomics of this endangered plant in the future. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

18 pages, 3442 KiB  
Article
The Complete Chloroplast Genome Sequence of Tree of Heaven (Ailanthus altissima (Mill.) (Sapindales: Simaroubaceae), an Important Pantropical Tree
by Josphat K. Saina, Zhi-Zhong Li, Andrew W. Gichira and Yi-Ying Liao
Int. J. Mol. Sci. 2018, 19(4), 929; https://doi.org/10.3390/ijms19040929 - 21 Mar 2018
Cited by 62 | Viewed by 5734
Abstract
Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until [...] Read more.
Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until now there is no published report regarding genome of this plant species or Simaroubaceae family. Therefore, in this paper, we first characterized A. altissima complete chloroplast genome sequence. The tree of heaven chloroplast genome was found to be a circular molecule 160,815 base pairs (bp) in size and possess a quadripartite structure. The A. altissima chloroplast genome contains 113 unique genes of which 79 and 30 are protein coding and transfer RNA (tRNA) genes respectively and also 4 ribosomal RNA genes (rRNA) with overall GC content of 37.6%. Microsatellite marker detection identified A/T mononucleotides as majority SSRs in all the seven analyzed genomes. Repeat analyses of seven Sapindales revealed a total of 49 repeats in A. altissima, Rhus chinensis, Dodonaea viscosa, Leitneria floridana, while Azadirachta indica, Boswellia sacra, and Citrus aurantiifolia had a total of 48 repeats. The phylogenetic analysis using protein coding genes revealed that A. altissima is a sister to Leitneria floridana and also suggested that Simaroubaceae is a sister to Rutaceae family. The genome information reported here could be further applied for evolution and invasion, population genetics, and molecular studies in this plant species and family. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

20 pages, 7120 KiB  
Article
Molecular Evolution of Chloroplast Genomes of Orchid Species: Insights into Phylogenetic Relationship and Adaptive Evolution
by Wan-Lin Dong, Ruo-Nan Wang, Na-Yao Zhang, Wei-Bing Fan, Min-Feng Fang and Zhong-Hu Li
Int. J. Mol. Sci. 2018, 19(3), 716; https://doi.org/10.3390/ijms19030716 - 02 Mar 2018
Cited by 111 | Viewed by 7186
Abstract
Orchidaceae is the 3rd largest family of angiosperms, an evolved young branch of monocotyledons. This family contains a number of economically-important horticulture and flowering plants. However, the limited availability of genomic information largely hindered the study of molecular evolution and phylogeny of Orchidaceae. [...] Read more.
Orchidaceae is the 3rd largest family of angiosperms, an evolved young branch of monocotyledons. This family contains a number of economically-important horticulture and flowering plants. However, the limited availability of genomic information largely hindered the study of molecular evolution and phylogeny of Orchidaceae. In this study, we determined the evolutionary characteristics of whole chloroplast (cp) genomes and the phylogenetic relationships of the family Orchidaceae. We firstly characterized the cp genomes of four orchid species: Cremastra appendiculata, Calanthe davidii, Epipactis mairei, and Platanthera japonica. The size of the chloroplast genome ranged from 153,629 bp (C. davidi) to 160,427 bp (E. mairei). The gene order, GC content, and gene compositions are similar to those of other previously-reported angiosperms. We identified that the genes of ndhC, ndhI, and ndhK were lost in C. appendiculata, in that the ndh I gene was lost in P. japonica and E. mairei. In addition, the four types of repeats (forward, palindromic, reverse, and complement repeats) were examined in orchid species. E. mairei had the highest number of repeats (81), while C. davidii had the lowest number (57). The total number of Simple Sequence Repeats is at least 50 in C. davidii, and, at most, 78 in P. japonica. Interestingly, we identified 16 genes with positive selection sites (the psbH, petD, petL, rpl22, rpl32, rpoC1, rpoC2, rps12, rps15, rps16, accD, ccsA, rbcL, ycf1, ycf2, and ycf4 genes), which might play an important role in the orchid species’ adaptation to diverse environments. Additionally, 11 mutational hotspot regions were determined, including five non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and ndhF-rpl32) and six coding regions (rps16, ndhC, rpl32, ndhI, ndhK, and ndhF). The phylogenetic analysis based on whole cp genomes showed that C. appendiculata was closely related to C. striata var. vreelandii, while C. davidii and C. triplicate formed a small monophyletic evolutionary clade with a high bootstrap support. In addition, five subfamilies of Orchidaceae, Apostasioideae, Cypripedioideae, Epidendroideae, Orchidoideae, and Vanilloideae, formed a nested evolutionary relationship in the phylogenetic tree. These results provide important insights into the adaptive evolution and phylogeny of Orchidaceae. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

15 pages, 2490 KiB  
Article
The Complete Plastome Sequence of an Antarctic Bryophyte Sanionia uncinata (Hedw.) Loeske
by Mira Park, Hyun Park, Hyoungseok Lee, Byeong-ha Lee and Jungeun Lee
Int. J. Mol. Sci. 2018, 19(3), 709; https://doi.org/10.3390/ijms19030709 - 01 Mar 2018
Cited by 36 | Viewed by 4681
Abstract
Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the [...] Read more.
Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. Sanionia uncinata (Hedw.) Loeske is one of the most dominant moss species in the maritime Antarctic. It has been researched as an important marker for ecological studies and as an extremophile plant for studies on stress tolerance. Here, we report the complete plastome sequence of S. uncinata, which can be exploited in comparative studies to identify the lineage-specific divergence across different species. The complete plastome of S. uncinata is 124,374 bp in length with a typical quadripartite structure of 114 unique genes including 82 unique protein-coding genes, 37 tRNA genes and four rRNA genes. However, two genes encoding the α subunit of RNA polymerase (rpoA) and encoding the cytochrome b6/f complex subunit VIII (petN) were absent. We could identify nuclear genes homologous to those genes, which suggests that rpoA and petN might have been relocated from the chloroplast genome to the nuclear genome. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

14 pages, 2162 KiB  
Article
Complete Chloroplast Genome Sequences of Four Meliaceae Species and Comparative Analyses
by Malte Mader, Birte Pakull, Céline Blanc-Jolivet, Maike Paulini-Drewes, Zoéwindé Henri-Noël Bouda, Bernd Degen, Ian Small and Birgit Kersten
Int. J. Mol. Sci. 2018, 19(3), 701; https://doi.org/10.3390/ijms19030701 - 01 Mar 2018
Cited by 35 | Viewed by 5864
Abstract
The Meliaceae family mainly consists of trees and shrubs with a pantropical distribution. In this study, the complete chloroplast genomes of four Meliaceae species were sequenced and compared with each other and with the previously published Azadirachta indica plastome. The five plastomes are [...] Read more.
The Meliaceae family mainly consists of trees and shrubs with a pantropical distribution. In this study, the complete chloroplast genomes of four Meliaceae species were sequenced and compared with each other and with the previously published Azadirachta indica plastome. The five plastomes are circular and exhibit a quadripartite structure with high conservation of gene content and order. They include 130 genes encoding 85 proteins, 37 tRNAs and 8 rRNAs. Inverted repeat expansion resulted in a duplication of rps19 in the five Meliaceae species, which is consistent with that in many other Sapindales, but different from many other rosids. Compared to Azadirachta indica, the four newly sequenced Meliaceae individuals share several large deletions, which mainly contribute to the decreased genome sizes. A whole-plastome phylogeny supports previous findings that the four species form a monophyletic sister clade to Azadirachta indica within the Meliaceae. SNPs and indels identified in all complete Meliaceae plastomes might be suitable targets for the future development of genetic markers at different taxonomic levels. The extended analysis of SNPs in the matK gene led to the identification of four potential Meliaceae-specific SNPs as a basis for future validation and marker development. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

12 pages, 3022 KiB  
Article
Exploring the History of Chloroplast Capture in Arabis Using Whole Chloroplast Genome Sequencing
by Akira Kawabe, Hiroaki Nukii and Hazuka Y. Furihata
Int. J. Mol. Sci. 2018, 19(2), 602; https://doi.org/10.3390/ijms19020602 - 18 Feb 2018
Cited by 28 | Viewed by 4107
Abstract
Chloroplast capture occurs when the chloroplast of one plant species is introgressed into another plant species. The phylogenies of nuclear and chloroplast markers from East Asian Arabis species are incongruent, which indicates hybrid origin and shows chloroplast capture. In the present study, the [...] Read more.
Chloroplast capture occurs when the chloroplast of one plant species is introgressed into another plant species. The phylogenies of nuclear and chloroplast markers from East Asian Arabis species are incongruent, which indicates hybrid origin and shows chloroplast capture. In the present study, the complete chloroplast genomes of A. hirsuta, A. nipponica, and A. flagellosa were sequenced in order to analyze their divergence and their relationships. The chloroplast genomes of A. nipponica and A. flagellosa were similar, which indicates chloroplast replacement. If hybridization causing chloroplast capture occurred once, divergence between recipient species would be lower than between donor species. However, the chloroplast genomes of species with possible hybrid origins, A. nipponica and A. stelleri, differ at similar levels to possible maternal donor species A. flagellosa, which suggests that multiple hybridization events have occurred in their respective histories. The mitochondrial genomes exhibited similar patterns, while A. nipponica and A. flagellosa were more similar to each other than to A. hirsuta. This suggests that the two organellar genomes were co-transferred during the hybridization history of the East Asian Arabis species. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

13 pages, 1965 KiB  
Article
Effects of TROL Presequence Mutagenesis on Its Import and Dual Localization in Chloroplasts
by Lea Vojta, Andrea Čuletić and Hrvoje Fulgosi
Int. J. Mol. Sci. 2018, 19(2), 569; https://doi.org/10.3390/ijms19020569 - 14 Feb 2018
Cited by 5 | Viewed by 3502
Abstract
Thylakoid rhodanase-like protein (TROL) is involved in the final step of photosynthetic electron transport from ferredoxin to ferredoxin: NADP+ oxidoreductase (FNR). TROL is located in two distinct chloroplast compartments—in the inner envelope of chloroplasts, in its precursor form; and in the thylakoid [...] Read more.
Thylakoid rhodanase-like protein (TROL) is involved in the final step of photosynthetic electron transport from ferredoxin to ferredoxin: NADP+ oxidoreductase (FNR). TROL is located in two distinct chloroplast compartments—in the inner envelope of chloroplasts, in its precursor form; and in the thylakoid membranes, in its fully processed form. Its role in the inner envelope, as well as the determinants for its differential localization, have not been resolved yet. In this work we created six N-terminal amino acid substitutions surrounding the predicted processing site in the presequence of TROL in order to obtain a construct whose import is affected or localization limited to a single intrachloroplastic site. By using in vitro transcription and translation and subsequent protein import methods, we found that a single amino acid exchange in the presequence, Ala67 to Ile67 interferes with processing in the stroma and directs the whole pool of in vitro translated TROL to the inner envelope of chloroplasts. This result opens up the possibility of studying the role of TROL in the chloroplast inner envelope as well as possible consequence/s of its absence from the thylakoids. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

18 pages, 3657 KiB  
Article
The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species
by Cuihua Gu, Luke R. Tembrock, Shaoyu Zheng and Zhiqiang Wu
Int. J. Mol. Sci. 2018, 19(2), 525; https://doi.org/10.3390/ijms19020525 - 09 Feb 2018
Cited by 35 | Viewed by 4945
Abstract
Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis [...] Read more.
Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

17 pages, 2608 KiB  
Article
Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis
by Zhi-Zhong Li, Josphat K. Saina, Andrew W. Gichira, Cornelius M. Kyalo, Qing-Feng Wang and Jin-Ming Chen
Int. J. Mol. Sci. 2018, 19(1), 319; https://doi.org/10.3390/ijms19010319 - 23 Jan 2018
Cited by 18 | Viewed by 6978
Abstract
The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic [...] Read more.
The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

3747 KiB  
Article
Mutational Biases and GC-Biased Gene Conversion Affect GC Content in the Plastomes of Dendrobium Genus
by Zhitao Niu, Qingyun Xue, Hui Wang, Xuezhu Xie, Shuying Zhu, Wei Liu and Xiaoyu Ding
Int. J. Mol. Sci. 2017, 18(11), 2307; https://doi.org/10.3390/ijms18112307 - 02 Nov 2017
Cited by 37 | Viewed by 4937
Abstract
The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of [...] Read more.
The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of GC content during genome evolution. However, these hypotheses have not been explicitly investigated in whole plastome sequences. Dendrobium is one of the largest genera in the orchid species. Evolutionary studies of the plastomic organization and base composition are limited in this genus. In this study, we obtained the high-quality plastome sequences of D. loddigesii and D. devonianum. The comparison results showed a nearly identical organization in Dendrobium plastomes, indicating that the plastomic organization is highly conserved in Dendrobium genus. Furthermore, the impact of three evolutionary forces—selection, mutational biases, and GC-biased gene conversion (gBGC)—on the variation of GC content in Dendrobium plastomes was evaluated. Our results revealed: (1) consistent GC content evolution trends and mutational biases in single-copy (SC) and inverted repeats (IRs) regions; and (2) that gBGC has influenced the plastome-wide GC content evolution. These results suggest that both mutational biases and gBGC affect GC content in the plastomes of Dendrobium genus. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

2431 KiB  
Article
The Complete Chloroplast Genome Sequences of the Medicinal Plant Forsythia suspensa (Oleaceae)
by Wenbin Wang, Huan Yu, Jiahui Wang, Wanjun Lei, Jianhua Gao, Xiangpo Qiu and Jinsheng Wang
Int. J. Mol. Sci. 2017, 18(11), 2288; https://doi.org/10.3390/ijms18112288 - 31 Oct 2017
Cited by 82 | Viewed by 6579
Abstract
Forsythia suspensa is an important medicinal plant and traditionally applied for the treatment of inflammation, pyrexia, gonorrhea, diabetes, and so on. However, there is limited sequence and genomic information available for F. suspensa. Here, we produced the complete chloroplast genomes of F. [...] Read more.
Forsythia suspensa is an important medicinal plant and traditionally applied for the treatment of inflammation, pyrexia, gonorrhea, diabetes, and so on. However, there is limited sequence and genomic information available for F. suspensa. Here, we produced the complete chloroplast genomes of F. suspensa using Illumina sequencing technology. F. suspensa is the first sequenced member within the genus Forsythia (Oleaceae). The gene order and organization of the chloroplast genome of F. suspensa are similar to other Oleaceae chloroplast genomes. The F. suspensa chloroplast genome is 156,404 bp in length, exhibits a conserved quadripartite structure with a large single-copy (LSC; 87,159 bp) region, and a small single-copy (SSC; 17,811 bp) region interspersed between inverted repeat (IRa/b; 25,717 bp) regions. A total of 114 unique genes were annotated, including 80 protein-coding genes, 30 tRNA, and four rRNA. The low GC content (37.8%) and codon usage bias for A- or T-ending codons may largely affect gene codon usage. Sequence analysis identified a total of 26 forward repeats, 23 palindrome repeats with lengths >30 bp (identity > 90%), and 54 simple sequence repeats (SSRs) with an average rate of 0.35 SSRs/kb. We predicted 52 RNA editing sites in the chloroplast of F. suspensa, all for C-to-U transitions. IR expansion or contraction and the divergent regions were analyzed among several species including the reported F. suspensa in this study. Phylogenetic analysis based on whole-plastome revealed that F. suspensa, as a member of the Oleaceae family, diverged relatively early from Lamiales. This study will contribute to strengthening medicinal resource conservation, molecular phylogenetic, and genetic engineering research investigations of this species. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

3611 KiB  
Article
Stable Membrane-Association of mRNAs in Etiolated, Greening and Mature Plastids
by Julia Legen and Christian Schmitz-Linneweber
Int. J. Mol. Sci. 2017, 18(9), 1881; https://doi.org/10.3390/ijms18091881 - 31 Aug 2017
Cited by 5 | Viewed by 3573
Abstract
Chloroplast genes are transcribed as polycistronic precursor RNAs that give rise to a multitude of processing products down to monocistronic forms. Translation of these mRNAs is realized by bacterial type 70S ribosomes. A larger fraction of these ribosomes is attached to chloroplast membranes. [...] Read more.
Chloroplast genes are transcribed as polycistronic precursor RNAs that give rise to a multitude of processing products down to monocistronic forms. Translation of these mRNAs is realized by bacterial type 70S ribosomes. A larger fraction of these ribosomes is attached to chloroplast membranes. This study analyzed transcriptome-wide distribution of plastid mRNAs between soluble and membrane fractions of purified plastids using microarray analyses and validating RNA gel blot hybridizations. To determine the impact of light on mRNA localization, we used etioplasts, greening plastids and mature chloroplasts from Zea mays as a source for membrane and soluble extracts. The results show that the three plastid types display an almost identical distribution of RNAs between the two organellar fractions, which is confirmed by quantitative RNA gel blot analyses. Furthermore, they reveal that different RNAs processed from polycistronic precursors show transcript-autonomous distribution between stroma and membrane fractions. Disruption of ribosomes leads to release of mRNAs from membranes, demonstrating that attachment is likely a direct consequence of translation. We conclude that plastid mRNA distribution is a stable feature of different plastid types, setting up rapid chloroplast translation in any plastid type. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

3809 KiB  
Article
Molecular Structure and Phylogenetic Analyses of Complete Chloroplast Genomes of Two Aristolochia Medicinal Species
by Jianguo Zhou, Xinlian Chen, Yingxian Cui, Wei Sun, Yonghua Li, Yu Wang, Jingyuan Song and Hui Yao
Int. J. Mol. Sci. 2017, 18(9), 1839; https://doi.org/10.3390/ijms18091839 - 24 Aug 2017
Cited by 77 | Viewed by 6416
Abstract
The family Aristolochiaceae, comprising about 600 species of eight genera, is a unique plant family containing aristolochic acids (AAs). The complete chloroplast genome sequences of Aristolochia debilis and Aristolochia contorta are reported here. The results show that the complete chloroplast genomes of A. [...] Read more.
The family Aristolochiaceae, comprising about 600 species of eight genera, is a unique plant family containing aristolochic acids (AAs). The complete chloroplast genome sequences of Aristolochia debilis and Aristolochia contorta are reported here. The results show that the complete chloroplast genomes of A. debilis and A. contorta comprise circular 159,793 and 160,576 bp-long molecules, respectively and have typical quadripartite structures. The GC contents of both species were 38.3% each. A total of 131 genes were identified in each genome including 85 protein-coding genes, 37 tRNA genes, eight rRNA genes and one pseudogene (ycf1). The simple-sequence repeat sequences mainly comprise A/T mononucletide repeats. Phylogenetic analyses using maximum parsimony (MP) revealed that A. debilis and A. contorta had a close phylogenetic relationship with species of the family Piperaceae, as well as Laurales and Magnoliales. The data obtained in this study will be beneficial for further investigations on A. debilis and A. contorta from the aspect of evolution, and chloroplast genetic engineering. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research, Other

22 pages, 807 KiB  
Review
Metabolic Reprogramming in Chloroplasts under Heat Stress in Plants
by Qing-Long Wang, Juan-Hua Chen, Ning-Yu He and Fang-Qing Guo
Int. J. Mol. Sci. 2018, 19(3), 849; https://doi.org/10.3390/ijms19030849 - 14 Mar 2018
Cited by 181 | Viewed by 15202
Abstract
Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat [...] Read more.
Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

15 pages, 1686 KiB  
Review
Chloroplast Protein Turnover: The Influence of Extraplastidic Processes, Including Autophagy
by Masanori Izumi and Sakuya Nakamura
Int. J. Mol. Sci. 2018, 19(3), 828; https://doi.org/10.3390/ijms19030828 - 12 Mar 2018
Cited by 45 | Viewed by 5890
Abstract
Most assimilated nutrients in the leaves of land plants are stored in chloroplasts as photosynthetic proteins, where they mediate CO2 assimilation during growth. During senescence or under suboptimal conditions, chloroplast proteins are degraded, and the amino acids released during this process are [...] Read more.
Most assimilated nutrients in the leaves of land plants are stored in chloroplasts as photosynthetic proteins, where they mediate CO2 assimilation during growth. During senescence or under suboptimal conditions, chloroplast proteins are degraded, and the amino acids released during this process are used to produce young tissues, seeds, or respiratory energy. Protein degradation machineries contribute to the quality control of chloroplasts by removing damaged proteins caused by excess energy from sunlight. Whereas previous studies revealed that chloroplasts contain several types of intraplastidic proteases that likely derived from an endosymbiosed prokaryotic ancestor of chloroplasts, recent reports have demonstrated that multiple extraplastidic pathways also contribute to chloroplast protein turnover in response to specific cues. One such pathway is autophagy, an evolutionarily conserved process that leads to the vacuolar or lysosomal degradation of cytoplasmic components in eukaryotic cells. Here, we describe and contrast the extraplastidic pathways that degrade chloroplasts. This review shows that diverse pathways participate in chloroplast turnover during sugar starvation, senescence, and oxidative stress. Elucidating the mechanisms that regulate these pathways will help decipher the relationship among the diverse pathways mediating chloroplast protein turnover. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

13 pages, 3772 KiB  
Review
Insights into the Mechanisms of Chloroplast Division
by Yamato Yoshida
Int. J. Mol. Sci. 2018, 19(3), 733; https://doi.org/10.3390/ijms19030733 - 04 Mar 2018
Cited by 13 | Viewed by 6239
Abstract
The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid) more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In [...] Read more.
The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid) more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

13 pages, 1258 KiB  
Review
Bacterial Heterologous Expression System for Reconstitution of Chloroplast Inner Division Ring and Evaluation of Its Contributors
by Hiroki Irieda and Daisuke Shiomi
Int. J. Mol. Sci. 2018, 19(2), 544; https://doi.org/10.3390/ijms19020544 - 11 Feb 2018
Cited by 3 | Viewed by 4561
Abstract
Plant chloroplasts originate from the symbiotic relationship between ancient free-living cyanobacteria and ancestral eukaryotic cells. Since the discovery of the bacterial derivative FtsZ gene—which encodes a tubulin homolog responsible for the formation of the chloroplast inner division ring (Z ring)—in the Arabidopsis genome [...] Read more.
Plant chloroplasts originate from the symbiotic relationship between ancient free-living cyanobacteria and ancestral eukaryotic cells. Since the discovery of the bacterial derivative FtsZ gene—which encodes a tubulin homolog responsible for the formation of the chloroplast inner division ring (Z ring)—in the Arabidopsis genome in 1995, many components of the chloroplast division machinery were successively identified. The knowledge of these components continues to expand; however, the mode of action of the chloroplast dividing system remains unknown (compared to bacterial cell division), owing to the complexities faced in in planta analyses. To date, yeast and bacterial heterologous expression systems have been developed for the reconstitution of Z ring-like structures formed by chloroplast FtsZ. In this review, we especially focus on recent progress of our bacterial system using the model bacterium Escherichia coli to dissect and understand the chloroplast division machinery—an evolutionary hybrid structure composed of both bacterial (inner) and host-derived (outer) components. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

Other

1350 KiB  
Brief Report
A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming
by Geng-Ming Lin, Yu-Heng Lai, Gilbert Audira and Chung-Der Hsiao
Int. J. Mol. Sci. 2017, 18(11), 2341; https://doi.org/10.3390/ijms18112341 - 06 Nov 2017
Cited by 6 | Viewed by 5710
Abstract
Green algae, Chlorella ellipsoidea, Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de [...] Read more.
Green algae, Chlorella ellipsoidea, Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5–0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Graphical abstract

997 KiB  
Brief Report
Two Coiled-Coil Proteins, WEB1 and PMI2, Suppress the Signaling Pathway of Chloroplast Accumulation Response that Is Mediated by Two Phototropin-Interacting Proteins, RPT2 and NCH1, in Seed Plants
by Noriyuki Suetsugu and Masamitsu Wada
Int. J. Mol. Sci. 2017, 18(7), 1469; https://doi.org/10.3390/ijms18071469 - 08 Jul 2017
Cited by 4 | Viewed by 3972
Abstract
Chloroplast movement is induced by blue light in a broad range of plant species. Weak light induces the chloroplast accumulation response and strong light induces the chloroplast avoidance response. Both responses are essential for efficient photosynthesis and are mediated by phototropin blue-light receptors. [...] Read more.
Chloroplast movement is induced by blue light in a broad range of plant species. Weak light induces the chloroplast accumulation response and strong light induces the chloroplast avoidance response. Both responses are essential for efficient photosynthesis and are mediated by phototropin blue-light receptors. J-DOMAIN PROTEIN REQUIRED FOR CHLOROPLAST ACCUMULATION RESPONSE 1 (JAC1) and two coiled-coil domain proteins WEAK CHLOROPLAST MOVEMENT UNDER BLUE LIGHT 1 (WEB1) and PLASTID MOVEMENT IMPAIRED 2 (PMI2) are required for phototropin-mediated chloroplast movement. Genetic analysis suggests that JAC1 is essential for the accumulation response and WEB1/PMI2 inhibit the accumulation response through the suppression of JAC1 activity under the strong light. We recently identified two phototropin-interacting proteins, ROOT PHOTOTROPISM 2 (RPT2) and NPH3/RPT2-like (NRL) PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) as the signaling components involved in chloroplast accumulation response. However, the relationship between RPT2/NCH1, JAC1 and WEB1/PMI2 remained to be determined. Here, we performed genetic analysis between RPT2/NCH1, JAC1, and WEB1/PMI2 to elucidate the signal transduction pathway. Full article
(This article belongs to the Special Issue Chloroplast)
Show Figures

Figure 1

Back to TopTop