ijms-logo

Journal Browser

Journal Browser

Molecular Research on Orchid Plants: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (20 February 2025) | Viewed by 539

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
Interests: plant evolutionary development; genomics; molecular biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Constituting approximately 10% of flowering plant species, orchids display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Comparison of orchid genomes could improve our understanding of their origins. The diversity and specialization in orchid floral morphology have fascinated botanists for centuries. The complex flower organization of orchids offers an opportunity to discover new variant genes and different levels of complexity in the morphogenesis of flowers. Orchids have been used as a source of medicine to treat different diseases, including tuberculosis, tumors, and inflammation. Some novel compounds and drugs, both in phytochemical and pharmacological points of view, have been reported from orchids. The secondary metabolites present in medicinal orchids possess a vast array of biological activities. To discover the medical value of novel components in orchid plants is potential for investment.

This Special Issue aims to provide a platform for molecular mechanistic research on orchids, with a special focus on exploring the orchid genomes with genomics tools, molecular development of orchid floral morphogenesis, and medicinal properties. We welcome your submissions of original papers and reviews based on results from molecular viewpoints.

This Special Issue is supervised by Prof. Dr. Wen‑Chieh Tsai and assisted by our Topical Advisory Panel Member Dr. Shijiang Cao (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China).

Prof. Dr. Wen‑Chieh Tsai
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • orchid
  • genomics
  • genome
  • genes
  • tumor
  • inflammation
  • drug
  • transcriptomics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3576 KiB  
Article
Resequencing and Functional Analysis Revealed That BsDFR4 Could Cause the Formation of Different Flower Colors in Bletilla striata (Orchidaceae)
by Siting Zheng, Zeyuan Mi, Yuanqing Chang, Ruohan Huang, Jiaxin Li, Xiulin Jiang, Shuai Liu and Zhezhi Wang
Int. J. Mol. Sci. 2025, 26(8), 3555; https://doi.org/10.3390/ijms26083555 - 10 Apr 2025
Viewed by 200
Abstract
The formation of flower color is closely related to anthocyanin synthesis. In this study, flowers of Bletilla striata (Orchidaceae) exhibiting distinct color morphs were collected and analyzed. The HPLC results showed significantly higher total flavonoid and anthocyanin contents in purple flowers compared to [...] Read more.
The formation of flower color is closely related to anthocyanin synthesis. In this study, flowers of Bletilla striata (Orchidaceae) exhibiting distinct color morphs were collected and analyzed. The HPLC results showed significantly higher total flavonoid and anthocyanin contents in purple flowers compared to pink counterparts, with increases of 2.20-fold (p < 0.01) and 15.22-fold (p < 0.01), respectively. Cyanidin was the predominant anthocyanin in B. striata. Resequencing analyses highlighted SNP as the primary variation associated with color divergence. A comprehensive screen identified 61 genes encoding enzymes critical to the flavonoid and anthocyanin biosynthesis pathways in B. striata. Among these, 16 flower-specific genes exhibited high expression levels and harbored SNP variations. Notably, a premature stop codon was identified in a gene encoding dihydroflavonol 4-reductase (DFR), leading to truncated protein synthesis and potential disruption of anthocyanin production. Further, the heterologous overexpression of BsDFR4 in Phalaenopsis aphrodite changed petal color from white to yellow-green, demonstrating that it indeed played a regulatory role in the formation of flower color. Furthermore, yeast one-hybrid assays confirmed that transcription factors BsMYB36 and BsMYB51 could directly bind to the BsDFR4 promoter, suggesting their synergistic regulation of anthocyanin biosynthesis. These results provided a conceptual basis for insights into the formation of different flower colors in Orchidaceae. Full article
(This article belongs to the Special Issue Molecular Research on Orchid Plants: 2nd Edition)
Show Figures

Figure 1

Back to TopTop