ijms-logo

Journal Browser

Journal Browser

Antimicrobial Agents: Natural Products or Synthetic Compounds

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: closed (20 January 2025) | Viewed by 13603

Special Issue Editor


E-Mail Website
Guest Editor
Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
Interests: flavonoid; natural compounds; biological activity; anticancer activity; antioxidant activity; chalcone; multidrug-resistant pathogens; food science; antimicrobial agents; cytotoxicity assays; amyloid; Crohn’s disease; AIEC; biofilm
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the era of widespread multidrug resistance amongst various microorganisms, it is important to search for new compounds with the etiology of multidrug-resistant strains that can effectively protect against infections.

We can ask ourselves whether such compounds are “gifts of nature”, that is, commonly available natural compounds. Maybe their derivatives are created by various chemical modifications, perhaps artificially synthesized compounds, or modifications of already existing compounds, such as antibiotics? Is there a possible pathway that uses a combination of substances from the above-mentioned groups, and which pathway will prove to be the best?

This Special Issue welcomes papers that address the above questions. Manuscripts that will bring us closer to developing an effective product in the fight against infectious diseases with multidrug-resistant strains will be considered.

Dr. Anna Duda-Madej
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • multidrug resistance
  • antimicrobial agents
  • synthetic compounds
  • infectious diseases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 6879 KiB  
Article
Glycyl-tRNA Synthetase as a Target for Antiviral Drug Screening Against Influenza Virus
by Jingjing Zhang, Xiaorong Li, Jingxian Liang, Xinru Meng, Chenchen Zhu, Guangpu Yang, Yali Liang, Qikai Zhou, Qianni Qin, Zan Li, Ting Zhang, Gen Liu and Litao Sun
Int. J. Mol. Sci. 2025, 26(7), 2912; https://doi.org/10.3390/ijms26072912 - 23 Mar 2025
Viewed by 455
Abstract
Influenza viruses are characterized by their high variability and pathogenicity, and effective therapeutic options remain limited. Given these challenges, targeting host cell proteins that facilitate viral replication presents a promising strategy for antiviral drug discovery. In the present study, we observed a significant [...] Read more.
Influenza viruses are characterized by their high variability and pathogenicity, and effective therapeutic options remain limited. Given these challenges, targeting host cell proteins that facilitate viral replication presents a promising strategy for antiviral drug discovery. In the present study, we observed a significant upregulation of Glycyl-tRNA synthetase (GlyRS) within 24 h post-PR8 virus infection. The inhibition of GlyRS expression in A549 cells resulted in a marked reduction in infection rates across multiple influenza virus strains, while the overexpression of GlyRS led to an increase in viral infectivity during the early stages of infection. These findings suggest that GlyRS plays a critical role in the replication of influenza virus. Accordingly, we screened for potential inhibitors targeting GlyRS and identified Lycobetaine and Scutellarein using a multifaceted approach. Through a combination of molecular dynamics simulations, we further elucidated the mechanisms of action and potential binding sites of these compounds. Both inhibitors effectively suppressed the replication of influenza viruses, and their antiviral activity was confirmed to be mediated by GlyRS targeting. Therefore, GlyRS inhibitors, such as Lycobetaine and Scutellarein, represent promising candidates for combating influenza infections and provide novel insights into the treatment of influenza and aaRS-related diseases, opening new avenues for the development of aaRS-targeted therapeutics. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

21 pages, 4672 KiB  
Article
The Synergy of Chitosan and Azoxystrobin Against Fusarium graminearum Is Modulated by Selected ABC Transporters
by Pawel Poznanski, Abdullah Shalmani, Pascal Poznanski and Waclaw Orczyk
Int. J. Mol. Sci. 2025, 26(1), 262; https://doi.org/10.3390/ijms26010262 - 30 Dec 2024
Cited by 1 | Viewed by 972
Abstract
The development of innovative and effective strategies to combat fungal pathogens is critical to sustainable crop protection. Fungicides have been used for over two centuries, with traditional copper- and sulfur-based formulations still in use due to their broad-spectrum, multisite mode of action, which [...] Read more.
The development of innovative and effective strategies to combat fungal pathogens is critical to sustainable crop protection. Fungicides have been used for over two centuries, with traditional copper- and sulfur-based formulations still in use due to their broad-spectrum, multisite mode of action, which minimizes the risk of pathogen resistance. In contrast, modern systemic fungicides, though potent, often target a single site of action, leading to the accelerated emergence of resistant fungal strains. This study explores synergistic interactions between chitosan (CS) and selected fungicides, focusing on their antifungal activity against Fusarium graminearum. Among the fungicides tested, azoxystrobin (Amistar) exhibited the highest 44.88 synergy score when combined with CS (30 kDa, degree of deacetylation ≥ 90), resulting in significantly improved antifungal efficacy. Furthermore, the combination of CS and Amistar with double-stranded RNA (dsRNA) targeting selected ABC transporter genes further amplified antifungal activity by silencing genes critical for fungal tolerance to treatment. This dual synergy highlights the potential of RNA interference (RNAi) as both a functional tool to investigate fungal physiology and an effective antifungal strategy. These findings reveal a promising and environmentally friendly approach to mitigate resistance while improving fungal control. Furthermore, the remarkable synergy between azoxystrobin and CS presents a novel mechanism with significant potential for sustainable agricultural applications, which warrants further investigation to elucidate its molecular basis. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

20 pages, 3745 KiB  
Article
Antibiofilm and Antimicrobial Potentials of Novel Synthesized Sulfur Camphor Derivatives
by Anna Duda-Madej, Szymon Viscardi, Katarzyna Pacyga, Robert Kupczyński, Wanda Mączka, Małgorzata Grabarczyk, Paweł Pacyga, Ewa Topola, Michał Ostrówka, Jacek Bania, Antoni Szumny and Katarzyna Wińska
Int. J. Mol. Sci. 2024, 25(20), 10895; https://doi.org/10.3390/ijms252010895 - 10 Oct 2024
Cited by 1 | Viewed by 1357
Abstract
The question being posed by scientists around the world is how different chemical modifications of naturally occurring compounds will affect their antimicrobial properties. In the current study, sulfur derivatives of camphor containing a sulfur atom were tested to detect their antimicrobial and antibiofilm [...] Read more.
The question being posed by scientists around the world is how different chemical modifications of naturally occurring compounds will affect their antimicrobial properties. In the current study, sulfur derivatives of camphor containing a sulfur atom were tested to detect their antimicrobial and antibiofilm potentials. The new compounds were tested on eight Gram-positive strains (S. aureus (3 isolates), S. epidermidis (4 isolates), and E. faecalis (1 isolate)) and eight Gram-negative strains (E. coli (6 isolates), A. baumannii (1 isolate), and P. aeruginosa (1 isolate)). The ability of the strains to eradicate a biofilm was evaluated under standard stationary and flow-through conditions using the Bioflux system. Two synthesized compounds, namely rac-thiocamphor (1a) and (S, S)-(+)-thiocamphor (2a), exhibited an effect on the 24 h biofilm formed by the Gram-positive strains. Our results are an important contribution to the science of natural compounds and allow us to classify our sulfur derivatives of camphor as potential prophylactic agents in treating skin infections, antiseptics, and disinfectants. The Gram-negative strains were excluded from further stages of the tests due to their high activity (MIC ≥ 512 µg/mL). On the other hand, the compound with the strongest antimicrobial activity against the Gram-positive strains was 2a, as it led led to a reductions in cell viability of 17–52% (for MIC), 37–66% (for 2MIC), and 40–94% (for 4MIC). In addition, the experimental retention index of thiocamphor was calculated for the first time. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

20 pages, 2450 KiB  
Article
Mystery of the Passerini Reaction for the Synthesis of the Antimicrobial Peptidomimetics against Nosocomial Pathogenic Bacteria
by Deepak S. Wavhal, Dominik Koszelewski, Cezary Gulko, Paweł Kowalczyk, Anna Brodzka, Karol Kramkowski and Ryszard Ostaszewski
Int. J. Mol. Sci. 2024, 25(15), 8330; https://doi.org/10.3390/ijms25158330 - 30 Jul 2024
Cited by 2 | Viewed by 1504
Abstract
The first example of applying salicylaldehyde derivatives, as well as coumarin with the formyl group at the C8 position in its structure, as carbonyl partners in a three-component Passerini reaction, is presented. As a result of research on the conditions of the Passerini [...] Read more.
The first example of applying salicylaldehyde derivatives, as well as coumarin with the formyl group at the C8 position in its structure, as carbonyl partners in a three-component Passerini reaction, is presented. As a result of research on the conditions of the Passerini reaction, the important role of the hydroxyl group in the salicylaldehyde used in the course of the multicomponent reaction was revealed. When an aldehyde with an unprotected hydroxyl group is used, only two-component α-hydroxy amide products are obtained. In contrast, the use of acylated aldehyde results in three-component α-acyloxy amide products with high efficiency. The developed protocol gives access to structurally diversified peptidomimetics with good yield. The compounds were also evaluated as antimicrobial agents against selected strains of nosocomial pathogenic bacteria. The structure–activity relationship revealed that inhibitory activity is strongly related to the presence of the trifluoromethyl group (CF3) or the methyl group at the C4 position in an unsaturated lactone ring of the coumarin scaffold. MIC and MBC studies were carried out on eight selected pathogenic bacteria strains (Gram-positive pathogenic Staphylococcus aureus strain (ATCC 23235), as well as on Gram-negative E. coli (K12 (ATCC 25404), R2 (ATCC 39544), R3 (ATCC 11775), and R4 (ATCC 39543)), Acinetobacter baumannii (ATCC 17978), Pseudomonas aeruginosa (ATCC 15442), and Enterobacter cloacae (ATCC 49141) have shown that the tested compounds show a strong bactericidal effect at low concentrations. Among all agents investigated, five exhibit higher antimicrobial activity than those observed for commonly used antibiotics. It should be noted that all the compounds tested showed very high activity against S. aureus, which is the main source of nosocomial infections that cause numerous fatalities. Additionally, the cytotoxicity of sixteen derivatives was measured with the use of the MTT test on BALB/c3T3 mouse fibroblast cell lines. The cytotoxicity studies revealed that the tested substances exert a similar or lower effect on cell proliferation than that observed for commonly used antibiotics within the range of therapeutic doses. A parallel MTT assay using ciprofloxacin, bleomycin, and cloxacillin showed that these antibiotics are more cytotoxic when tested in mammalian cells, and cell viability is in the range of 85.0–89.9%. Furthermore, we have shown that the studied coumarin-based peptidomimetics, depending on their structural characteristics, are nonselective and act efficiently against various Gram-positive and Gram-negative pathogens, which is of great importance for hospitalised patients. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

18 pages, 855 KiB  
Article
Comparison of the Effects of Essential Oils from Cannabis sativa and Cannabis indica on Selected Bacteria, Rumen Fermentation, and Methane Production—In Vitro Study
by Aleksandra Tabiś, Antoni Szumny, Jacek Bania, Katarzyna Pacyga, Kamila Lewandowska and Robert Kupczyński
Int. J. Mol. Sci. 2024, 25(11), 5861; https://doi.org/10.3390/ijms25115861 - 28 May 2024
Cited by 1 | Viewed by 2347
Abstract
This study aimed to evaluate the effects of essential oils (EOs) extracted from Cannabis sativa L. and Cannabis indica Lam. on in vitro ruminal fermentation characteristics, selected rumen microbial populations, and methane production. GC-MS analyses allowed us to identify 89 compounds in both [...] Read more.
This study aimed to evaluate the effects of essential oils (EOs) extracted from Cannabis sativa L. and Cannabis indica Lam. on in vitro ruminal fermentation characteristics, selected rumen microbial populations, and methane production. GC-MS analyses allowed us to identify 89 compounds in both EOs. It was found that E-β-caryophyllene predominated in C. sativa (18.4%) and C. indica (24.1%). An in vitro (Ankom) test was performed to analyse the control and monensin groups, as well as the 50 µL or 100 µL EOs. The samples for volatile fatty acids (VFAs), lactate, and microbiological analysis were taken before incubation and after 6 and 24 h. The application of EOs of C. indica resulted in an increase in the total VFAs of acetate and propionate after 6 h of incubation. The applied EOs had a greater impact on the reduction in methane production after 6 h, but no apparent effect was noted after 24 h. Lower concentrations of C. sativa and C. indica had a more pronounced effect on Lactobacillus spp. and Buryrivibrio spp. than monensin. The presented findings suggest that C. sativa and C. indica supplementation can modify ruminal fermentation, the concentrations of specific volatile fatty acids, and methane production. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

13 pages, 3327 KiB  
Article
Natural Sunlight-Mediated Emodin Photoinactivation of Aeromonas hydrophila
by Gelana Urgesa, Liushen Lu, Jinwei Gao, Lichun Guo, Ting Qin, Bo Liu, Jun Xie and Bingwen Xi
Int. J. Mol. Sci. 2024, 25(10), 5444; https://doi.org/10.3390/ijms25105444 - 16 May 2024
Cited by 2 | Viewed by 2675
Abstract
Aeromonas hydrophila can be a substantial concern, as it causes various diseases in aquaculture. An effective and green method for inhibiting A. hydrophila is urgently required. Emodin, a naturally occurring anthraquinone compound, was exploited as a photo-antimicrobial agent against A. hydrophila. At [...] Read more.
Aeromonas hydrophila can be a substantial concern, as it causes various diseases in aquaculture. An effective and green method for inhibiting A. hydrophila is urgently required. Emodin, a naturally occurring anthraquinone compound, was exploited as a photo-antimicrobial agent against A. hydrophila. At the minimum inhibitory concentration of emodin (256 mg/L) to inactivate A. hydrophilia in 30 min, an 11.32% survival rate was observed under 45 W white compact fluorescent light irradiation. In addition, the antibacterial activity under natural sunlight (0.78%) indicated its potential for practical application. Morphological observations demonstrated that the cell walls and membranes of A. hydrophila were susceptible to damage by emodin when exposed to light irradiation. More importantly, the photoinactivation of A. hydrophila was predominantly attributed to the hydroxyl radicals and superoxide radicals produced by emodin, according to the trapping experiment and electron spin resonance spectroscopy. Finally, a light-dependent reactive oxygen species punching mechanism of emodin to photoinactivate A. hydrophila was proposed. This study highlights the potential use of emodin in sunlight-mediated applications for bacterial control, thereby providing new possibilities for the use of Chinese herbal medicine in aquatic diseases prevention. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
Harnessing Nature’s Defence: The Antimicrobial Efficacy of Pasteurised Cattle Milk-Derived Extracellular Vesicles on Staphylococcus aureus ATCC 25923
by Dulmini Nanayakkara Sapugahawatte, Kasun Godakumara, Mihkel Mäesaar, Gayandi Ekanayake, Getnet Balcha Midekessa, Madhusha Prasadani, Suranga Kodithuwakku, Mati Roasto, Aneta Andronowska and Alireza Fazeli
Int. J. Mol. Sci. 2024, 25(9), 4759; https://doi.org/10.3390/ijms25094759 - 26 Apr 2024
Cited by 1 | Viewed by 2249
Abstract
Increasing antimicrobial resistance (AMR) challenges conventional antibiotics, prompting the search for alternatives. Extracellular vesicles (EVs) from pasteurised cattle milk offer promise, due to their unique properties. This study investigates their efficacy against five pathogenic bacteria, including Staphylococcus aureus ATCC 25923, aiming to combat [...] Read more.
Increasing antimicrobial resistance (AMR) challenges conventional antibiotics, prompting the search for alternatives. Extracellular vesicles (EVs) from pasteurised cattle milk offer promise, due to their unique properties. This study investigates their efficacy against five pathogenic bacteria, including Staphylococcus aureus ATCC 25923, aiming to combat AMR and to develop new therapies. EVs were characterised and tested using various methods. Co-culture experiments with S. aureus showed significant growth inhibition, with colony-forming units decreasing from 2.4 × 105 CFU/mL (single dose) to 7.4 × 104 CFU/mL (triple doses) after 12 h. Milk EVs extended lag time (6 to 9 h) and increased generation time (2.8 to 4.8 h) dose-dependently, compared to controls. In conclusion, milk EVs exhibit dose-dependent inhibition against S. aureus, prolonging lag and generation times. Despite limitations, this suggests their potential in addressing AMR. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 1086 KiB  
Review
Mapping Antimalarial Drug Resistance in Mozambique: A Systematic Review of Plasmodium falciparum Genetic Markers Post-ACT Implementation
by Celso Raul Silambo Chaves, Clemente da Silva, Acácio Salamandane and Fatima Nogueira
Int. J. Mol. Sci. 2024, 25(24), 13645; https://doi.org/10.3390/ijms252413645 - 20 Dec 2024
Viewed by 1138
Abstract
Malaria continues to be a significant public health burden in many tropical and subtropical regions. Mozambique ranks among the top countries affected by malaria, where it is a leading cause of morbidity and mortality, accounting for 29% of all hospital deaths in the [...] Read more.
Malaria continues to be a significant public health burden in many tropical and subtropical regions. Mozambique ranks among the top countries affected by malaria, where it is a leading cause of morbidity and mortality, accounting for 29% of all hospital deaths in the general population and 42% of deaths amongst children under five. This review presents a comparative analysis of data on five critical genes associated with antimalarial drug resistance: pfmdr1, pfcrt, pfk13, pfdhfr, and pfdhps, along with the copy number variation (CNV) in genes pfmdr1 and pfpm2/3. These are genes associated with parasite response to antimalarials currently used to treat uncomplicated P. falciparum malaria in Mozambique. The review synthesizes data collected from published studies conducted in Mozambique after the introduction of artemisinin-based combination therapies (ACTs) (2006) up to June 2024, highlighting the presence or absence of mutations in these genes across Mozambique. We aimed at mapping the prevalence and distribution of these molecular markers across the country in order to contribute to the development of targeted interventions to sustain the efficacy of malaria treatments in Mozambique. Four databases were used to access the articles: PubMed, Science Direct, Scopus, and Google scholar. The search strategy identified 132 studies addressing malaria and antimalarial resistance. Of these, 112 were excluded for various reasons, leaving 20 studies to be included in this review. Children and pregnant women represent the majority of target groups in studies on all types of antimalarials. Most studies (87.5%) were conducted in the provinces of Maputo and Gaza. The primary alleles reported were pfcrt CVMNK, and in the most recent data, its wild-type form was found in the majority of patients. A low prevalence of mutations in the pfk13 gene was identified reflecting the effectiveness of ACTs. In pfk13, only mutation A578S was reported in Niassa and Tete. CNVs were observed in studies carried out in the south of Mozambique, with a frequency of 1.1–5.1% for pfmdr1 and a frequency of 1.1–3.4% for pfpm2. This review indicates that molecular markers linked to malaria resistance show considerable variation across provinces in Mozambique, with most up-to-date data accessible for Maputo and Gaza. In contrast, provinces such as Zambezia and Inhambane have limited data on several genes, while Nampula lacks data on all drug resistance markers. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

Back to TopTop