ijms-logo

Journal Browser

Journal Browser

Molecular Scale Studies of Computational Catalysis and Density Functional Theory in Materials Chemistry

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Materials Science".

Deadline for manuscript submissions: closed (20 December 2024) | Viewed by 7333

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Interests: computational catalysis; DFT and multireference methods; MOF; PAH
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Computational catalysis is an outstanding branch of science that merges different approaches of microkinetic modelling, atomistic simulations, and catalyst design based on fundamental concepts. Density functional theory (DFT), the work horse of atomistic simulation, is an approach that was born around 60 years ago but has only been applied in the field this century. The variety of versions of DFT makes it useful in both homogeneous and heterogeneous catalysis and allows it to be a successful tool of computational materials chemistry.

This Special Issue is mainly focused on computational catalysis and density functional theory in materials chemistry at the molecular scale, which involves predicting the structure and properties of molecules. By optimizing the geometric configuration of the molecule, its equilibrium structure can be obtained, thus allowing the vibration frequency, infrared spectrum, etc., of the molecule to be calculated. In addition, by calculating molecule properties such as electron affinity and ionization potential, the chemical reactivity and stability of molecules can be predicted, providing strong support for drug design and catalytic reaction mechanism research.

Dr. Dmitry Sharapa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • density functional theory (DFT)
  • materials chemistry
  • computational catalysis
  • transition states
  • single-atom catalysts
  • catalyst-support interaction
  • Gibbs free energy
  • metal surfaces
  • transition metal complexes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1348 KiB  
Article
Multi-Level Protocol for Mechanistic Reaction Studies Using Semi-Local Fitted Potential Energy Surfaces
by Tomislav Piskor, Peter Pinski, Thilo Mast and Vladimir Rybkin
Int. J. Mol. Sci. 2024, 25(15), 8530; https://doi.org/10.3390/ijms25158530 - 5 Aug 2024
Viewed by 993
Abstract
In this work, we propose a multi-level protocol for routine theoretical studies of chemical reaction mechanisms. The initial reaction paths of our investigated systems are sampled using the Nudged Elastic Band (NEB) method driven by a cheap electronic structure method. Forces recalculated at [...] Read more.
In this work, we propose a multi-level protocol for routine theoretical studies of chemical reaction mechanisms. The initial reaction paths of our investigated systems are sampled using the Nudged Elastic Band (NEB) method driven by a cheap electronic structure method. Forces recalculated at the more accurate electronic structure theory for a set of points on the path are fitted with a machine learning technique (in our case symmetric gradient domain machine learning or sGDML) to produce a semi-local reactive potential energy surface (PES), embracing reactants, products and transition state (TS) regions. This approach has been successfully applied to a unimolecular (Bergman cyclization of enediyne) and a bimolecular (SN2 substitution) reaction. In particular, we demonstrate that with only 50 to 150 energy-force evaluations with the accurate reference methods (here complete-active-space self-consistent field, CASSCF, and coupled-cluster singles and doubles, CCSD) it is possible to construct a semi-local PES giving qualitative agreement for stationary-point geometries, intrinsic reaction coordinates and barriers. Furthermore, we find a qualitative agreement in vibrational frequencies and reaction rate coefficients. The key aspect of the method’s performance is its multi-level nature, which not only saves computational effort but also allows extracting meaningful information along the reaction path, characterized by zero gradients in all but one direction. Agnostic to the nature of the TS and computationally economic, the protocol can be readily automated and routinely used for mechanistic reaction studies. Full article
Show Figures

Figure 1

15 pages, 4930 KiB  
Article
The Effect of Conjugated Nitrile Structures as Acceptor Moieties on the Photovoltaic Properties of Dye-Sensitized Solar Cells: DFT and TD-DFT Investigation
by Maha J. Tommalieh, Abdulaziz I. Aljameel, Rageh K. Hussein, Khalled Al-heuseen, Suzan K. Alghamdi and Sharif Abu Alrub
Int. J. Mol. Sci. 2024, 25(13), 7138; https://doi.org/10.3390/ijms25137138 - 28 Jun 2024
Cited by 7 | Viewed by 1160
Abstract
A major challenge in improving the overall efficiency of dye-sensitized solar cells is improving the optoelectronic properties of small molecule acceptors. This work primarily investigated the effects of conjugation in nitriles incorporated as acceptor moieties into a newly designed series of D-A-A dyes. [...] Read more.
A major challenge in improving the overall efficiency of dye-sensitized solar cells is improving the optoelectronic properties of small molecule acceptors. This work primarily investigated the effects of conjugation in nitriles incorporated as acceptor moieties into a newly designed series of D-A-A dyes. Density functional theory was employed to specifically study how single–double and single–triple conjugation in nitriles alters the optical and electronic properties of these dyes. The Cy-4c dye with a highly conjugated nitrile unit attained the smallest band gap (1.80 eV), even smaller than that of the strong cyanacrylic anchor group (2.07 eV). The dyes lacking conjugation in nitrile groups did not contribute to the LUMO, while LUMOs extended from donors to conjugated nitrile components, facilitating intramolecular charge transfer and causing a strong bind to the film surface. Density of state analysis revealed a considerable impact of conjugated nitrile on the electronic properties of dyes through an effective contribution in the LUMO, exceeding the role of the well-known strong 2,1,3-benzothiadiazole acceptor unit. The excited state properties and the absorption spectra were investigated using time-dependent density functional theory (TD-DFT). Conjugation in the nitrile unit caused the absorption band to broaden, strengthen, and shift toward the near-infrared region. The proposed dyes also showed optimum photovoltaic properties; all dyes possess high light-harvesting efficiency (LHE) values, specifically 96% for the dyes Cy-3b and Cy-4c, which had the most conjugated nitrile moieties. The dyes with higher degrees of conjugation had longer excitation lifetime values, which promote charge transfer by causing steady charge recombination at the interface. These findings may provide new insights into the structure of conjugated nitriles and their function as acceptor moieties in DSSCS, which may lead to the development of extremely effective photosensitizers for solar cells. Full article
Show Figures

Figure 1

14 pages, 1643 KiB  
Article
DFT and TD-DFT Investigations for the Limitations of Lengthening the Polyene Bridge between N,N-dimethylanilino Donor and Dicyanovinyl Acceptor Molecules as a D-π-A Dye-Sensitized Solar Cell
by Sharif Abu Alrub, Ahmed I. Ali, Rageh K. Hussein, Suzan K. Alghamdi and Sally A. Eladly
Int. J. Mol. Sci. 2024, 25(11), 5586; https://doi.org/10.3390/ijms25115586 - 21 May 2024
Cited by 8 | Viewed by 1245
Abstract
One useful technique for increasing the efficiency of organic dye-sensitized solar cells (DSSCs) is to extend the π-conjugated bridges between the donor (D) and the acceptor (A) units. The present study used the DFT and TD–DFT techniques to investigate the effect of lengthening [...] Read more.
One useful technique for increasing the efficiency of organic dye-sensitized solar cells (DSSCs) is to extend the π-conjugated bridges between the donor (D) and the acceptor (A) units. The present study used the DFT and TD–DFT techniques to investigate the effect of lengthening the polyene bridge between the donor N, N-dimethyl-anilino and the acceptor dicyanovinyl. The results of the calculated key properties were not all in line with expectations. Planar structure was associated with increasing the π-conjugation linker, implying efficient electron transfer from the donor to the acceptor. A smaller energy gap, greater oscillator strength values, and red-shifted electronic absorption were also observed when the number of polyene units was increased. However, some results indicated that the potential of the stated dyes to operate as effective dye-sensitized solar cells is limited when the polyene bridge is extended. Increasing the polyene units causes the HOMO level to rise until it exceeds the redox potential of the electrolyte, which delays regeneration and impedes the electron transport cycle from being completed. As the number of conjugated units increases, the terminal lobes of HOMO and LUMO continue to shrink, which affects the ease of intramolecular charge transfer within the dyes. Smaller polyene chain lengths yielded the most favorable results when evaluating the efficiency of electron injection and regeneration. This means that the charge transfer mechanism between the conduction band of the semiconductor and the electrolyte is not improved by extending the polyene bridge. The open circuit voltage (VOC) was reduced from 1.23 to 0.70 V. Similarly, the excited-state duration (τ) decreased from 1.71 to 1.23 ns as the number of polyene units increased from n = 1 to n = 10. These findings are incompatible with the power conversion efficiency requirements of DSSCs. Therefore, the elongation of the polyene bridge in such D-π-A configurations rules out its application in solar cell devices. Full article
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 12359 KiB  
Review
Review of Recent Computational Research on the Adsorption of PFASs with a Variety of Substrates
by Alfonso Minervino and Kevin D. Belfield
Int. J. Mol. Sci. 2024, 25(6), 3445; https://doi.org/10.3390/ijms25063445 - 19 Mar 2024
Cited by 4 | Viewed by 2954
Abstract
The widespread use and impervious nature of per- and polyfluorinated alkyl substances (PFASs) is leading to potentially harmful exposure in numerous environments. One avenue to explore remediation of PFAS-contaminated environments involves investigating how well PFASs adsorb onto various substrates. In the current review, [...] Read more.
The widespread use and impervious nature of per- and polyfluorinated alkyl substances (PFASs) is leading to potentially harmful exposure in numerous environments. One avenue to explore remediation of PFAS-contaminated environments involves investigating how well PFASs adsorb onto various substrates. In the current review, we focus on summarizing recent computational research, largely involving density functional theory (DFT) and molecular dynamics (MD), into the adsorption and interaction of PFASs with a variety of substrates with an aim to provide insight and inspire further research that may lead to solutions to this critical problem that impacts the environment and human health. Full article
Show Figures

Figure 1

Back to TopTop