ijms-logo

Journal Browser

Journal Browser

Synthetic Chemistry in Drug Discovery

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 20 April 2026 | Viewed by 1030

Special Issue Editor


E-Mail Website
Guest Editor
Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
Interests: drug derivatization; catalysis; electrochemistry; AI-driven molecular design; late-stage functionalization of drugs

Special Issue Information

Dear Colleagues,

This Special Issue highlights the pivotal role of synthetic chemistry in advancing drug discovery, focusing on the design, synthesis, and optimization of novel molecular entities with therapeutic potential. At the molecular level, synthetic chemistry enables the construction of complex drug-like molecules, the exploration of structure–activity relationships (SARs), and the development of innovative synthetic methodologies to address unmet medical needs. Contributions are encouraged to cover diverse areas, including the synthesis of bioactive compounds, fragment-based drug design, late-stage functionalization, and the application of cutting-edge technologies, such as automated synthesis and AI-driven molecular design. This Special Issue aims to showcase how synthetic chemistry drives the discovery of new drug candidates, enhances drug efficacy, and overcomes challenges in bioavailability, selectivity, and toxicity. By bridging chemical innovation with biological relevance, this Special Issue seeks to inspire interdisciplinary collaborations and accelerate the development of next-generation therapeutics.

Dr. Kathiravan Suppan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • late-stage functionalization
  • AI-driven synthesis
  • drug discovery
  • synthetic chemistry
  • transition metal catalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

26 pages, 2491 KiB  
Review
Therapeutic Potential of Isoxazole–(Iso)oxazole Hybrids: Three Decades of Research
by Urszula Bąchor, Marcin Mączyński and Aleksandra Sochacka-Ćwikła
Int. J. Mol. Sci. 2025, 26(15), 7082; https://doi.org/10.3390/ijms26157082 - 23 Jul 2025
Viewed by 422
Abstract
Heterocyclic compounds are a common subject in the field of medicinal chemistry due to their numerous pharmaceutical applications. Among these, nitrogen- and oxygen-containing five-membered heterocyclic rings, namely oxazole and isoxazole, are particularly significant, exhibiting a broad spectrum of biological activities. Molecular hybridization, the [...] Read more.
Heterocyclic compounds are a common subject in the field of medicinal chemistry due to their numerous pharmaceutical applications. Among these, nitrogen- and oxygen-containing five-membered heterocyclic rings, namely oxazole and isoxazole, are particularly significant, exhibiting a broad spectrum of biological activities. Molecular hybridization, the process that enables the fusion of bioactive scaffolds, is a powerful strategy for the development of novel compounds characterized by enhanced or multitarget activities. This review focuses on hybrids incorporating linked oxazole and/or isoxazole moieties (i.e., isoxazole–oxazole and isoxazole–isoxazole hybrids), drawing upon peer-reviewed research articles and international patents from 1995 to the end of 2024. The overview systematically presents the diverse biological activities reported for the isoxazole–(iso)oxazole hybrids, including anticancer, antibacterial, antitubercular, anti-inflammatory, and antidepressant effects, alongside their corresponding chemical structures. Our analysis of the literature highlights the structural versatility and therapeutic potential of this important class of heterocyclic hybrids. Full article
(This article belongs to the Special Issue Synthetic Chemistry in Drug Discovery)
Show Figures

Figure 1

Back to TopTop