ijms-logo

Journal Browser

Journal Browser

Genetic Testing in Molecular Pathology and Diagnosis

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 1031

Special Issue Editor


E-Mail Website
Guest Editor
1. Human Genetics, Altamedica, Rome, Italy
2. Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
Interests: molecular analysis; genetics; genetics of cardiomyopathies; whole-exome sequencing; reproductive genetics; preconception carrier screening; infertility; preimplantation genetic test
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Special Issue “Genetic Testing in Molecular Pathology and Diagnosis” aims to explore the latest advancements and applications of genetic testing within the realm of molecular pathology. This Special Issue will cover a wide range of topics, including the development and validation of novel genetic tests and their integration into clinical practice. Focus will be placed on how these genetic insights contribute to a deeper understanding of disease mechanisms, inform therapeutic decisions, and enhance personalized medicine approaches. We encourage submissions that highlight cutting-edge research and reviews that elucidate the molecular underpinnings of genetic disorders and the innovative methodologies employed in genetic testing. This Special Issue seeks to provide a comprehensive overview of the current state and future directions of genetic testing in molecular pathology, offering valuable insights to researchers, clinicians, and healthcare professionals dedicated to improving patient outcomes through advanced genetic diagnostics.

Dr. Marco Fabiani
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetic testing
  • molecular pathology
  • personalized medicine
  • genetic diagnostics
  • disease mechanisms
  • novel genetic tests
  • clinical integration
  • patient management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

17 pages, 3732 KiB  
Article
A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions
by Vivienne J. Tan, Ying Liang, Arnold S. Tan, Simin Wong, Nur Asherah, Pengyian Chua, Caroline G. Lee, Mahesh A. Choolani, Truong Dang and Samuel S. Chong
Int. J. Mol. Sci. 2025, 26(10), 4532; https://doi.org/10.3390/ijms26104532 - 9 May 2025
Viewed by 261
Abstract
Combined preimplantation genetic testing of aneuploidy (PGT-A) and monogenic disease (PGT-M) can be achieved through PCR-based whole genome amplification (WGA) and next-generation sequencing (NGS). However, pathogenic variant detection is usually achieved indirectly through single nucleotide polymorphism haplotyping, as direct detection of pathogenic variants [...] Read more.
Combined preimplantation genetic testing of aneuploidy (PGT-A) and monogenic disease (PGT-M) can be achieved through PCR-based whole genome amplification (WGA) and next-generation sequencing (NGS). However, pathogenic variant detection is usually achieved indirectly through single nucleotide polymorphism haplotyping, as direct detection of pathogenic variants is not always possible. We evaluated whether isothermal WGA was suitable for combined PGT-A and PGT-M that also permitted direct detection of repeat expansions and large deletions, in addition to indirect linkage analysis using microsatellite markers. Five-cell replicates from selected cell lines were subjected to isothermal or PCR-based WGA, followed by NGS-based PGT-A and direct and indirect PGT-M of Huntington’s disease and spinal muscular atrophy. Both WGA methods accurately detected aneuploidy and large (10 Mb) segmental imbalances. However, isothermal WGA produced higher genotyping accuracy compared with PCR-based WGA for all analysed microsatellite markers (93.5% vs. 75.6%), as well as at the HTT CAG repeat locus (100% vs. 7.7%) and the SMN1/2 locus (100% vs. 71.8%). These results demonstrate that isothermal WGA is potentially ideal for combined PGT-A and PGT-M that permits both direct and indirect detection of pathogenic variants including repeat expansions and gene deletions. Full article
(This article belongs to the Special Issue Genetic Testing in Molecular Pathology and Diagnosis)
Show Figures

Figure 1

Other

Jump to: Research

9 pages, 1703 KiB  
Case Report
Long-Read Sequencing Identifies Mosaic Sequence Variations in Friedreich’s Ataxia-GAA Repeats
by Joohyun Park, Claudia Dufke, Zofia Fleszar, Michael Schlotterbek, Elena Buena-Atienza, Lara G. Stühn, Caspar Gross, Marc Sturm, Stephan Ossowski, Ludger Schöls, Olaf Riess and Tobias B. Haack
Int. J. Mol. Sci. 2025, 26(11), 4969; https://doi.org/10.3390/ijms26114969 - 22 May 2025
Viewed by 142
Abstract
Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder characterized by ataxia, sensory loss and pyramidal signs. While the majority of FRDA cases are caused by biallelic GAA trinucleotide repeat expansions in intron 1 of FXN, there is a subset of patients harboring [...] Read more.
Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder characterized by ataxia, sensory loss and pyramidal signs. While the majority of FRDA cases are caused by biallelic GAA trinucleotide repeat expansions in intron 1 of FXN, there is a subset of patients harboring a heterozygous pathogenic small variant compound-heterozygous with a GAA repeat expansion. We report on the diagnostic journey of a 21-year-old patient who was clinically suspected of having FRDA at the age of 12 years. Genetic testing included fragment analysis, gene panel analysis and exome sequencing, which only detected one pathogenic heterozygous missense variant (c.389 G>T,p.Gly130Val) in FXN. Although conventional repeat analyses failed to detect GAA expansions in our patient, subsequent short-read genome sequencing (GS) indicated a potential GAA repeat expansion. This finding was confirmed by long-read GS, which in addition revealed a complex pattern of interruptions. Both large and small GAA expansions with divergent interruptions containing G, A, GA, GAG and/or GAAG sequences were present within one allele, indicating mosaic sequence variations. Our findings underscore the complexity of repeat expansions which can exhibit both interruptions and somatic instability. We also highlight the utility of long-read GS in unraveling intricate genetic profiles, ultimately contributing to more accurate diagnoses in clinical practice. Full article
(This article belongs to the Special Issue Genetic Testing in Molecular Pathology and Diagnosis)
Show Figures

Figure 1

10 pages, 2187 KiB  
Case Report
Characterization of a Novel GATA4 Missense Variant p.Gly303Trp in a Family with Septal Heart Defects and Pulmonary Stenosis
by Marco Fabiani, Costanza Zangheri, Antonella Cima, Francesca Monaco, Chiara Ali’, Maria Antonietta Barone, Antonella Viola, Alvaro Mesoraca, Katia Margiotti and Claudio Giorlandino
Int. J. Mol. Sci. 2025, 26(10), 4931; https://doi.org/10.3390/ijms26104931 - 21 May 2025
Viewed by 54
Abstract
Congenital heart disease (CHD) represents a prevalent group of structural cardiac anomalies often associated with alterations in key transcription factors including NKX2-5, TBX5, and, particularly, GATA4. GATA4 is a zinc finger transcription factor essential for regulating genes involved in cardiogenesis. [...] Read more.
Congenital heart disease (CHD) represents a prevalent group of structural cardiac anomalies often associated with alterations in key transcription factors including NKX2-5, TBX5, and, particularly, GATA4. GATA4 is a zinc finger transcription factor essential for regulating genes involved in cardiogenesis. Here, we report the identification of a novel heterozygous missense variant in GATA4 (NM_002052.5:c.907G>T, p.Gly303Trp) in a family with a history of CHD. The proband, exhibiting ventricular septal defect (VSD) and pulmonary stenosis, was referred for genetic evaluation after recurrent spontaneous abortions occurred in their partner. In addition, the mother of the proband has a history of atrial septal defect (ASD) with pulmonary stenosis, which suggests a familial inheritance pattern. Full article
(This article belongs to the Special Issue Genetic Testing in Molecular Pathology and Diagnosis)
Show Figures

Figure 1

Back to TopTop