ijms-logo

Journal Browser

Journal Browser

Particles, Vesicles and Small Structures

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (20 February 2025) | Viewed by 935

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Medicine and Immunology, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
2. Medical Research Service, Veterans Administration Medical Center, Durham, NC 27705, USA
Interests: immune properties of DNA; immunochemical properties of anti-DNA antibodies; the properties of antinuclear antibodies; the role of DNA in the pathogenesis of systemic lupus erythematosus; the role of microparticles as a source of extracellular DNA; immune properties of HMGB1
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

An important focus of current research concerns the unique biological and immunological properties of small structures, also termed particles or vesicles. These structures have diverse origins and can be natural as well as synthetic. Natural particles include bacteria, viruses and fungi as well as extracellular vesicles that emanate from activated and dying cells; natural particles in general have nucleic acid components and provide a vector for transmission of genetic information. In addition, natural particles can contain immunostimulatory molecules such as cytokines. In all cases, small structures that occur naturally concentrate information or bioactive molecules to achieve greater potency, transmissibility and resistance to degradation. Synthetic particles (often called nanoparticles) can vary in biochemical composition and have been designed for in vivo application as novel therapeutic agents where drugs may be encapsulated or displayed on the surface. Like natural particles, synthetic particles have increased biological activity compared to free molecules. Synthetic particles can be "tuned" in terms of their chemistry to have particular activity in the clinical setting, including the ability to target specific cell types.

A special issue will be developed to encompass natural and synthetic nanostructures and include papers on the biology, chemistry, biophysics and pharmacology of small structures. Important cross-cutting themes concern the impact of a particulate structure on extracellular and intracellular trafficking, cell uptake and cell signaling, all of which pertain to both natural and synthetic small structures.

Prof. Dr. David Stephen Pisetsky
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2073 KiB  
Article
PD-L1-Targeting Nanoparticles for the Treatment of Triple-Negative Breast Cancer: A Preclinical Model
by Wendy K. Nevala, Liyi Geng, Hui Xie, Noah A. Stueven and Svetomir N. Markovic
Int. J. Mol. Sci. 2025, 26(7), 3295; https://doi.org/10.3390/ijms26073295 - 2 Apr 2025
Viewed by 404
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed nano-immune conjugates (NIC) in which hydrophobic chemotherapy drugs like paclitaxel (PTX) and SN38, the active metabolite of irinotecan, are made water soluble by formulating them into albumin-based nanoparticles (nab) that are hydrophobically linked to various IgG1 monoclonal antibodies, creating an antigen-targetable nano-immune conjugate. To date, we have successfully tested PTX containing NICs linked to either VEGF- or CD20-targeted antibodies in two phase I clinical trials against multiple relapsed ovarian/uterine cancer or non-Hodgkin’s lymphoma, respectively. Herein, we describe a novel NIC created with either PTX or SN38 that is coated with anti-PD-L1-targeting antibodies for the treatment of a preclinical model of TNBC. In vitro testing suggests that the chemotherapy drug and antibody retain their toxicity and ligand binding capability in the context of the NIC. Furthermore, both the PTX and SN-38 NIC demonstrate superior anti-tumor efficacy relative to antibody and chemotherapy drugs alone in a PD-L1 + MDA-MB-231 human TNBC xenograft model, which could translate clinically to patients with TNBC. Full article
(This article belongs to the Special Issue Particles, Vesicles and Small Structures)
Show Figures

Figure 1

Back to TopTop