ijms-logo

Journal Browser

Journal Browser

Advances in Plant Virus Diseases and Virus-Induced Resistance

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 5720

Special Issue Editors


E-Mail Website
Guest Editor
Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
Interests: plant biology; sugarcane; plant molecular biology

Special Issue Information

Dear Colleagues,

Plants are affected by numerous viruses and viroids linked to the vegetative propagation practices in many cultivated species and the rapid virus transmission by natural vectors. This Special Issue deals with recent advances and perspectives in the study of viruses and viroids that affect plant species, mainly with regard to the detection and characterization of the viruses and viroids involved, their transmission, the analysis of the pathogenicity, and the search for novel genetic control tools. For one thing, new sequencing technologies are rapidly reshaping the way in which we can identify and characterize new virus and viroid isolates. In addition, specific efforts aimed at the identification of new viruses and viroids and the analysis of data from massive plant sequencing can reveal the presence of these and new or known pathogens. These technologies have also been used to deepen the knowledge on pathogenicity mechanisms at the level of gene expression and miRNA that underlie the interactions between plants and their main viruses and viroids. More recently, the epigenetic regulation of this response has also been addressed. Recently developed biotechnological control tools include the transfer of resistance through grafting, the use of new sources of resistance, and the development of gene silencing strategies through genetic transformation or CRISPR-type gene editing. Furthermore, the application of next-generation sequencing offers new opportunities for the in-depth characterization of viromes from different plant species. In addition, these novel genome editing techniques will contribute to improving our knowledge on virus–host interactions and resistance mechanisms. This global omic perspective will be analyzed and discussed in this Special Issue, which highlights the main implications of this recent development for the analysis of the plant virus diseases and the virus-induced resistance.

Dr. Pedro Martínez-Gómez
Prof. Dr. Muqing Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • virus detection
  • virus characterization
  • virus resistance
  • gene silencing
  • epigenetic regulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 2977 KiB  
Article
Molecular Characterization and Pathogenicity of an Infectious cDNA Clone of Youcai Mosaic Virus on Solanum nigrum
by Tianxiao Gu, Chenwei Feng, Yanhong Hua, Duxuan Liu, Haoyu Chen, Zhen He, Kai Xu and Kun Zhang
Int. J. Mol. Sci. 2024, 25(3), 1620; https://doi.org/10.3390/ijms25031620 - 28 Jan 2024
Cited by 1 | Viewed by 1478
Abstract
Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the [...] Read more.
Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the interaction between host plant and virus. Therefore, this work aims to guide people to better prevent, control, and utilize the youcai mosaic virus (YoMV). Here, the YoMV was found to infect the Solanum nigrum under natural conditions. Then, an infectious cDNA clone of YoMV was successfully constructed using triple-shuttling vector-based yeast recombination. Furthermore, we established phylogenetic trees based on the complete genomic sequences, the replicase gene, movement protein gene, and coat protein gene using the corresponding deposited sequences in NCBI. Simultaneously, the evolutionary relationship of the YoMV discovered on S. nigrum to others was determined and analyzed. Moreover, the constructed cDNA infectious clone of YoMV from S. nigrum could systematically infect the Nicotiana benthamiana and S. nigrum by agrobacterium-mediated infiltration. Our investigation supplied a reverse genetic tool for YoMV study, which will also contribute to in-depth study and profound understanding of the interaction between YoMV and host plant. Full article
(This article belongs to the Special Issue Advances in Plant Virus Diseases and Virus-Induced Resistance)
Show Figures

Figure 1

17 pages, 5461 KiB  
Article
Strigolactones Negatively Regulate Tobacco Mosaic Virus Resistance in Nicotiana benthamiana
by Renyan Huang, Shuaijun Bie, Shan Li, Bin Yuan, Li Zhang, Zhuo Zhang, Jianbin Chen, Weimin Ning, Jing Peng, Yu Zhang, Songbai Zhang, Yong Liu and Deyong Zhang
Int. J. Mol. Sci. 2024, 25(15), 8518; https://doi.org/10.3390/ijms25158518 - 4 Aug 2024
Viewed by 930
Abstract
Strigolactones (SLs) are plant hormones that regulate diverse developmental processes and environmental responses in plants. It has been discovered that SLs play an important role in regulating plant immune resistance to pathogens but there are currently no reports on their role in the [...] Read more.
Strigolactones (SLs) are plant hormones that regulate diverse developmental processes and environmental responses in plants. It has been discovered that SLs play an important role in regulating plant immune resistance to pathogens but there are currently no reports on their role in the interaction between Nicotiana benthamiana and the tobacco mosaic virus (TMV). In this study, the exogenous application of SLs weakened the resistance of N. benthamiana to TMV, promoting TMV infection, whereas the exogenous application of Tis108, a SL inhibitor, resulted in the opposite effect. Virus-induced gene silencing (VIGS) inhibition of two key SL synthesis enzyme genes, NtCCD7 and NtCCD8, enhanced the resistance of N. benthamiana to TMV. Additionally, we conducted a screening of N. benthamiana related to TMV infection. TMV-infected plants treated with SLs were compared to the control by using RNA-seq. The KEGG enrichment analysis and weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) suggested that plant hormone signaling transduction may play a significant role in the SL–TMV–N. benthamiana interactions. This study reveals new functions of SLs in regulating plant immunity and provides a reference for controlling TMV diseases in production. Full article
(This article belongs to the Special Issue Advances in Plant Virus Diseases and Virus-Induced Resistance)
Show Figures

Figure 1

12 pages, 4932 KiB  
Article
Transmission of Oyster Mushroom Spherical Virus to Progeny via Basidiospores and Horizontally to a New Host Pleurotus floridanus
by Yifan Wang, Zhidong Wen, Yaoyao Yang, Xiangting Hu, Zhizhong Song, Haijing Hu, Guoyue Song, Lunhe You, Jianrui Wang, Yu Liu, Xianhao Cheng and Xiaoyan Zhang
Int. J. Mol. Sci. 2024, 25(11), 5677; https://doi.org/10.3390/ijms25115677 - 23 May 2024
Cited by 1 | Viewed by 669
Abstract
Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically through sporulation in natural settings. Oyster mushroom spherical virus (OMSV) is a mycovirus that infects Pleurotus ostreatus, with horizontal transmission via hyphal anastomosis. However, whether OMSV can be vertically transmitted is unclear. [...] Read more.
Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically through sporulation in natural settings. Oyster mushroom spherical virus (OMSV) is a mycovirus that infects Pleurotus ostreatus, with horizontal transmission via hyphal anastomosis. However, whether OMSV can be vertically transmitted is unclear. This study aimed to investigate the transmission characteristics of OMSV to progeny via basidiospores and horizontally to a new host. A total of 37 single-basidiospore offspring were obtained from OMSV-infected P. ostreatus and Pleurotus pulmonarius for Western blot detection of OMSV. The OMSV-carrying rate among monokaryotic isolates was 19% in P. ostreatus and 44% in P. pulmonarius. Then, OMSV-free and OMSV-infected monokaryotic isolates were selected for hybridization with harvested dikaryotic progeny strains. Western blot analyses of the offspring revealed that the OMSV transmission efficiency was 50% in P. ostreatus and 75% in P. pulmonarius, indicating vertical transmission via sexual basidiospores. Furthermore, we observed the horizontal transfer of OMSV from P. pulmonarius to Pleurotus floridanus. OMSV infection in P. floridanus resulted in significant inhibition of mycelial growth and yield loss. This study was novel in reporting the vertical transmission of OMSV through basidiospores, and its infection and pathogenicity in a new host P. floridanus. Full article
(This article belongs to the Special Issue Advances in Plant Virus Diseases and Virus-Induced Resistance)
Show Figures

Figure 1

19 pages, 4715 KiB  
Article
Transcriptome and Metabolome Analyses Reveal That Jasmonic Acids May Facilitate the Infection of Cucumber Green Mottle Mosaic Virus in Bottle Gourd
by Zhenggang Li, Yafei Tang, Guobing Lan, Lin Yu, Shanwen Ding, Xiaoman She and Zifu He
Int. J. Mol. Sci. 2023, 24(23), 16566; https://doi.org/10.3390/ijms242316566 - 21 Nov 2023
Viewed by 1450
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction [...] Read more.
Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction between CGMMV and host plants, the molecular mechanism of CGMMV infection is still unclear. In this study, we utilized transcriptome and metabolome analyses to investigate the antiviral response of bottle gourd (Lagenaria siceraria) under CGMMV stress. The transcriptome analysis revealed that in comparison to mock-inoculated bottle gourd, 1929 differently expressed genes (DEGs) were identified in CGMMV-inoculated bottle gourd. Among them, 1397 genes were upregulated while 532 genes were downregulated. KEGG pathway enrichment indicated that the DEGs were mainly involved in pathways including the metabolic pathway, the biosynthesis of secondary metabolites, plant hormone signal transduction, plant–pathogen interaction, and starch and sucrose metabolism. The metabolome result showed that there were 76 differentially accumulated metabolites (DAMs), of which 69 metabolites were up-accumulated, and 7 metabolites were down-accumulated. These DAMs were clustered into several pathways, including biosynthesis of secondary metabolites, tyrosine metabolism, flavonoid biosynthesis, carbon metabolism, and plant hormone signal transduction. Combining the transcriptome and metabolome results, the genes and metabolites involved in the jasmonic acid and its derivatives (JAs) synthesis pathway were significantly induced upon CGMMV infection. The silencing of the allene oxide synthase (AOS) gene, which is the key gene involved in JAs synthesis, reduced CGMMV accumulation. These findings suggest that JAs may facilitate CGMMV infection in bottle gourd. Full article
(This article belongs to the Special Issue Advances in Plant Virus Diseases and Virus-Induced Resistance)
Show Figures

Figure 1

15 pages, 5040 KiB  
Article
Transcriptome Analysis Reveals the Effect of Oyster Mushroom Spherical Virus Infection in Pleurotus ostreatus
by Yifan Wang, Junjie Yan, Guoyue Song, Zhizhong Song, Matthew Shi, Haijing Hu, Lunhe You, Lu Zhang, Jianrui Wang, Yu Liu, Xianhao Cheng and Xiaoyan Zhang
Int. J. Mol. Sci. 2024, 25(17), 9749; https://doi.org/10.3390/ijms25179749 - 9 Sep 2024
Viewed by 455
Abstract
Oyster mushroom spherical virus (OMSV) is a mycovirus that inhibits mycelial growth, induces malformation symptoms, and decreases the yield of fruiting bodies in Pleurotus ostreatus. However, the pathogenic mechanism of OMSV infection in P. ostreatus is poorly understood. In this study, RNA [...] Read more.
Oyster mushroom spherical virus (OMSV) is a mycovirus that inhibits mycelial growth, induces malformation symptoms, and decreases the yield of fruiting bodies in Pleurotus ostreatus. However, the pathogenic mechanism of OMSV infection in P. ostreatus is poorly understood. In this study, RNA sequencing (RNA-seq) was conducted, identifying 354 differentially expressed genes (DEGs) in the mycelium of P. ostreatus during OMSV infection. Verifying the RNA-seq data through quantitative real-time polymerase chain reaction on 15 DEGs confirmed the consistency of gene expression trends. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses highlighted the pivotal role of primary metabolic pathways in OMSV infection. Additionally, significant changes were noted in the gene expression levels of carbohydrate-active enzymes (CAZymes), which are crucial for providing the carbohydrates needed for fungal growth, development, and reproduction by degrading renewable lignocellulose. The activities of carboxymethyl cellulase, laccase, and amylase decreased, whereas chitinase activity increased, suggesting a potential mechanism by which OMSV influenced mycelial growth through modulating CAZyme activities. Therefore, this study provided insights into the pathogenic mechanisms triggered by OMSV in P. ostreatus. Full article
(This article belongs to the Special Issue Advances in Plant Virus Diseases and Virus-Induced Resistance)
Show Figures

Figure 1

Back to TopTop